coala Documentation
Release 0.11.0

The coala Developers

May 22, 2017

Home

1 coalib package 3
1.1 Subpackages e e e e e e e 3
1.2 Submodules e e 121
1.3 coalib.coalamodule e e e 121
1.4 coalib.coala_cimodule e 121
1.5 coalib.coala_delete_origmodule 121
1.6 coalib.coala_format module e 121
1.7 coalib.coala_jsonmodule e e e 121
1.8 coalib.coala_mainmodule e e e e 121
1.9 coalib.coala_modes module L 122
1.10 Module contents e e e e e e e e e e e e e e 122
2 Welcome to the Newcomers Guide! 123
2.1 Step0.Runcoala. 124
2.2 Step 1. Meet the Community! 124
2.3 Step 2. Grab an Invitation to the Organization 124
2.4 Optional. Get Help With Git o e e e e e e e e e e 124
2.5 Step3.Picking Upanlssue e e e e 125
2.6 Step 4. Creating a Fork and Testing Your Changes 125
277 Step 5. Sending Your Changes e 126
2.8 Step 6. CreatingaPull Request v v it i it ettt i e e 126
2.9 Step 7. Waiting for Review L e e e e e 126
2.10 Step 8. Review Process o e e e e e e e e e 127
3 coala settings 129
4 Bear Installation Tool 133
4.1 Installation e e e e e e e e e e e e e 133
42 USaZE . . o o e e e e e e 133
5 How To Write a Good Commit Message 135
5.1 Quickreference e e e e e e e e e 135
5.2 What Makes a Good Commit L e e e e e e 135
5.3 How to Write Good Commit MeSSages v v v v v v i et e e e e e e e e e 135
5.4 Editing Commit MesSages it e e e e e e e e 137
5.5 Why Do We Need Good Commits? 138
6 Codestyle for coala 139
6.1 Additional Style Guidelines e e e e 139

7 Git Tutorial 141

7.1 Howtoinstall Git e e e 141
7.2 Getting Started withcoala L e e e e e 141
7.3 Grabbing coalaon yourlocalmachine o L oL 141
7.4 Gettingtowork e e e e e e 142
7.5 Creatinganewbranch L 142
7.6 Checking your work e e e e e e e e e e 142
7.7 Adding the files and commiting L. L e e e e e e 143
7.8 Runcoala. e e 143
7.9 Pushingthecommit L 143
7.10 CreatingaPull Request e 144
TAL FolloWw-Up . . . o v o o e e e e e e e e e e e e e e e e e e e 144
T2 Rebasing o o e e e e e e e e e 144
7.13 Squashing yourcommits e e 145
7.14 Common GitIssues o e e e e e e e e 145
7.15 Useful Gitcommands L e e e 146
8 Reviewing 149
8.1 AmIGood Enough to Do Code Review? 149
8.2 Manual Review Process e 149
8.3 Automated Review Process L e 150
8.4 Forthe Reviewers i e e e 150
9 Development Setup Notes 153
0.1 Virtualenv e e e e e e 153
0.2 RePOSIOTIES . . . v v v v o e e e e e e e e e e e e e e e e e e e 154
9.3 Imstalling from Git L. e e e e 154
9.4 Building Documentation L e 154
10 Adding CI to your Fork 155
10.1 Travis CI . . . o o o o e e 155
10.2 AppVeyor CI e 155
103 Circle CI . . . o0 o e e 156
104 Codecov o i i e e e e e 156
11 Guide to Writing a Native Bear 159
11.1 Whatisabear? o e e e e e 159
11.2 AHelloWorldBear e 159
11.3 Communicating withthe User e e 160
11.4 Results o L e 162
11.5 Bears Depending on Other Bears L o 162
11.6 Hidden Results L e e e 163
11.7 More Configuration Options« v v v v v it e e e e e e e e e e e e e e e 163
12 Linter Bears 167
12.1 Whyis This Useful? e 167
122 Whatdowe Need? e e 167
12.3 Writingthe Bear L L e e e e 167
12,4 Using SeVeritieS o o v vt e s e e e e e e e e e e e e e e 169
12.5 Suggest Corrections Using the corrected and unified-diff Output Formats 170
12.6 Adding Settingstoour Bear L 170
12.7 Finished Bear o e e 172
12.8 Adding Metadata Attributes oL e e e e e e e e e 172
12.9 Running and Testingour Bear e 173
12.10 Global Linter Bears o 0 o e e e e e e e e 174

12.11 Whereto Find More... 0 e e e e e e 174

13 Linter Bears - Advanced Feature Reference 175
13.1 Supplying Configuration Files with generate_config 175
13.2 Custom Processing Functions with process_output 176
13.3 Additional Prerequisite Check e e 176

14 External Bears 179
14.1 Whyis This Useful? e e e e e e e e 179
142 How Does This Work? e e 179
14.3 External Bear Generation Tool e 179
144 WritingaBearin C4+4 L L oL e 180
14.5 Writing a Bear With Javascriptand Node L o 183
14.6 TheJSON Spec o v v i e 186

15 How to use LocalBearTestHelper to test your bears 189
15.1 Understanding through examples 189
152 AFnalNote e e e 191

16 Introduction 193
16.1 Actually WritingaTest L . L e 193
162 setUp () and £earDOWN ()« « v v v v v o e e e e e e e e e e e e e e e e e e e 195
163 Kickstart L e e e e e e 195
16,4 GlosSary o i e e e e e e e e e e e e e e 196

17 Writing Documentation 197

18 Testing 199
18.1 Executingour Tests o o i e e e e e e e e e e e e e e e 199
18.2 USINGtESLCOVETAZE . « v v v v v v v v e 200

19 Useful Links 201
19.1 Git-Links o e 201
19.2 Python-Links o o e e e e e e e e 201
193 rST-Links o e e e e 201
19.4 coala-Links L e e e e e e e e e e 202

Python Module Index 203

coala Documentation, Release 0.11.0

coala.lo

Hey there! You’re in the right place if you:
» want to develop coala itself!
» want to develop a bear for coala.

If you’re trying to use coala, you should have a look at our user documentation instead.

Home 1

https://docs.coala.io

coala Documentation, Release 0.11.0

2 Home

CHAPTER 1

coalib package

Subpackages

coalib.bearlib package

Subpackages

coalib.bearlib.abstractions package
Submodules
coalib.bearlib.abstractions.ExternalBearWrap module

coalib.bearlib.abstractions.ExternalBearWrap.external_ bear_ wrap (executable:
str, ¥*options)

coalib.bearlib.abstractions.Linter module

coalib.bearlib.abstractions.Linter.linter (executable: str, global_bear: bool = False,
use_stdin: bool = False, use_stdout: bool =
True, use_stderr: bool = False, config_suffix:
str = <

Il

, executable_check_fail_info: str = ',
prerequisite_check_command: tuple = (), out-
put_format: (<class ‘str’>, None) = None,
**options)

Decorator that creates a Bear that is able to process results from an external linter tool. Depending on the value

of global_bear this can either be a LocalBear or a GlobalBear.

The main functionality is achieved through the create_arguments () function that constructs the
command-line-arguments that get passed to your executable.

class XLintBear

def create_arguments
return

Or for a GlobalBear without the filename and file:

coala Documentation, Release 0.11.0

YLintBear

create_arguments

Requiring settings is possible like in Bear.run () with supplying additional keyword arguments (and if
needed with defaults).

XLintBear

create_arguments

str
bool

Sometimes your tool requires an actual file that contains configuration. 1inter allows you to just define the
contents the configuration shall contain via generate_config () and handles everything else for you.

XLintBear

generate_config

create_arguments

As you can see you don’t need to copy additional keyword-arguments you introduced from
create_arguments () to generate_config () and vice-versa. linter takes care of forwarding the
right arguments to the right place, so you are able to avoid signature duplication.

If you override process_output, you have the same feature like above (auto-forwarding of the right argu-
ments defined in your function signature).

Note when overriding process_output: Providing a single output stream (via use_stdout or

4 Chapter 1. coalib package

coala Documentation, Release 0.11.0

use_stderr) puts the according string attained from the stream into parameter output, providing

both output streams inputs a tuple with (stdout, stderr). Providing use_stdout=False and
use_stderr=False raises a ValueError. By default use_stdout is True and use_stderr is
False.

Documentation: Bear description shall be provided at class level. If you document your additional parameters
inside create_arguments, generate_config and process_output, beware that conflicting docu-
mentation between them may be overridden. Document duplicated parameters inside create_arguments
first, then in generate_config and after that inside process_output.

For the tutorial see: http://api.coala.io/en/latest/Developers/Writing_Linter_Bears.html
Parameters
* executable — The linter tool.

* use_stdin — Whether the input file is sent via stdin instead of passing it over the
command-line-interface.

* use_stdout — Whether to use the stdout output stream. Incompatible with
global_bear=True.

* use_stderr — Whether to use the stderr output stream.

* config_suffix — The suffix-string to append to the filename of the configuration file
created when generate_config is supplied. Useful if your executable expects getting
a specific file-type with specific file-ending for the configuration file.

* executable_check fail info - Information that is provided together with the fail
message from the normal executable check. By default no additional info is printed.

* prerequisite_check_command - A custom command to check for when
check_prerequisites gets invoked (via subprocess.check_call ()). Mustbe
an Iterable.

* prerequisite_check_fail message - A custom message that
gets displayed when check_prerequisites fails while invoking
prerequisite_check_command. Can only be provided together with

prerequisite_check_command.

* global_bear — Whether the created bear should be a GlobalBear or not. Global
bears will be run once on the whole project, instead of once per file. Incompatible with
use_stdin=True.

* output_format — The output format of the underlying executable. Valid values are

— None: Define your own format by overriding process_output. Overriding
process_output is then mandatory, not specifying it raises a ValueError.

— 'regex': Parse output using a regex. See parameter output_regex.

— 'corrected': The output is the corrected of the given file. Diffs are then generated to
supply patches for results.

— 'unified_diff"': The output is the unified diff of the corrections. Patches are then
supplied for results using this output.

Passing something else raises a ValueError.

* output_regex — The regex expression as a string that is used to parse the output gen-
erated by the underlying executable. It should use as many of the following named groups
(via (?P<name>...)) to provide a good result:

— filename - The name of the linted file. This is relevant for global bears only.

1.1. Subpackages 5

http://api.coala.io/en/latest/Developers/Writing_Linter_Bears.html

coala Documentation, Release 0.11.0

— line - The line where the issue starts.

— column - The column where the issue starts.

— end_line - The line where the issue ends.

— end_column - The column where the issue ends.
— severity - The severity of the issue.

— message - The message of the result.

— origin - The origin of the issue.

additional_info - Additional info provided by the issue.

The groups 1ine, column, end_line and end_column don’t have to match numbers
only, they can also match nothing, the generated Result is filled automatically with None
then for the appropriate properties.

Needs to be provided if output_format is 'regex"'.

* severity map - A dict used to map a severity string (captured from
the output_regex with the named group severity) to an actual
coalib.results.RESULT_SEVERITY for a result. Severity strings are mapped
case-insensitive!

— RESULT_SEVERITY.MAJOR: Mapped by critical, ¢, fatal, fail, f, error,
err ore.

— RESULT_SEVERITY.NORMAL: Mapped by warning, warn or w.

— RESULT_SEVERITY.INFO: Mapped by information, info, i, note or
suggestion.

A ValueError is raised when the named group severity is not used inside
output_regex and this parameter is given.

* diff severity - The severity to use for all results if output_format
is 'corrected' or 'unified diff'. By default this value is
coalib.results.RESULT_SEVERITY.NORMAL. The given value needs to be
defined inside coalib.results.RESULT_SEVERITY.

* result_message — The message-string to use for all results. Can be used only together
with correctedorunified_diff or regex output format. When using corrected
or unified_diff, the default value is "Inconsistency found.", while for
regex this static message is disabled and the message matched by output_regex is
used instead.

* diff distance — Number of unchanged lines that are allowed in between two changed
lines so they get yielded as one diff if corrected or unified_diff output-format is
given. If a negative distance is given, every change will be yielded as an own diff, even if
they are right beneath each other. By default this value is 1.

Raises
* ValueError — Raised when invalid options are supplied.

* TypeError — Raised when incompatible types are supplied. See parameter documenta-
tions for allowed types.

Returns A LocalBear derivation that lints code using an external tool.

6 Chapter 1. coalib package

coala Documentation, Release 0.11.0

coalib.bearlib.abstractions.SectionCreatable module

class coalib.bearlib.abstractions.SectionCreatable.SectionCreatable
Bases: object

A SectionCreatable is an object that is creatable out of a section object. Thus this is the class for many helper
objects provided by the bearlib.

If you want to use an object that inherits from this class the following approach is recommended: Instantiate it
via the from_section method. You can provide default arguments via the lower case keyword arguments.

Example:

creates a SpacingHelper and if the “tabwidth” setting is needed and not contained in section, 8 will be taken.

It is recommended to write the prototype of the __init__ method according to this example:

_ init_ (self int bool

This way the get_optional_settings and the get_non_optional_settings method will extract automatically that:
esetting_one should be an integer
esetting_two should be a bool and defaults to False

If you write a documentation comment, you can use :param to add descriptions to your parameters. These will
be available too automatically.

classmethod from_section (section, **kwargs)
Creates the object from a section object.

Parameters

* section — A section object containing at least the settings specified by
get_non_optional_settings()

* kwargs — Additional keyword arguments
classmethod get_metadata ()

classmethod get_non_optional_settings ()
Retrieves the minimal set of settings that need to be defined in order to use this object.

Returns a dictionary of needed settings as keys and help texts as values

classmethod get_optional_settings ()
Retrieves the settings needed IN ADDITION to the ones of get_non_optional_settings to use this object
without internal defaults.

Returns a dictionary of needed settings as keys and help texts as values

Module contents

The abstractions package contains classes that serve as interfaces for helper classes in the bearlib.

1.1. Subpackages 7

coala Documentation, Release 0.11.0

coalib.bearlib.aspects package
Submodules
coalib.bearlib.aspects.Metadata module

class coalib.bearlib.aspects.Metadata.Body (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Body,coalib.bearlib.aspects.base.aspectbase

class Existence (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Existence,coalib.bearlib.aspects.base.aspectba

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Body

subaspects = {}

class Body . Length (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Length, coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Body

subaspects = {}
Body . docs = <coalib.bearlib.aspects.docs.Documentation object>

Body.parent
alias of CommitMessage

Body . subaspects = {‘Existence’: <aspectclass ‘Root.Metadata.CommitMessage.Body.Existence’>, ‘Length’: <aspectcl

class coalib.bearlib.aspects.Metadata.ColonExistence (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.ColonExistence,
coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

class coalib.bearlib.aspects.Metadata.CommitMessage (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.CommitMessage,
coalib.bearlib.aspects.base.aspectbase

class Body (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Body, coalib.bearlib.aspects.base.aspectbase

class Existence (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Existence,
coalib.bearlib.aspects.base.aspectbase

8 Chapter 1. coalib package

coala Documentation, Release 0.11.0

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Body

subaspects = {}

class CommitMessage.Body .Length (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Length,coalib.bearlib.aspects.base.aspectbe

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Body

subaspects = {}

CommitMessage.Body .docs = <coalib.bearlib.aspects.docs.Documentation object>

CommitMessage.Body.parent
alias of CommitMessage

CommitMessage.Body.subaspects = {‘Existence’: <aspectclass ‘Root.Metadata.CommitMessage.Body.Existen

class CommitMessage .Emptiness (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Emptiness, coalib.bearlib.aspects.base.aspectba

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of CommitMessage

subaspects = {}

class CommitMessage.Shortlog (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Shortlog,coalib.bearlib.aspects.base.aspectbas

class ColonExistence (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.ColonExistence,

coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

class CommitMessage.Shortlog.FirstCharacter (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.FirstCharacter,

coalib.bearlib.aspects.base.aspectbhase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

class CommitMessage.Shortlog.Length (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Length, coalib.bearlib.aspects.base.aspecthba

1.1. Subpackages

coala Documentation, Release 0.11.0

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

class CommitMessage.Shortlog. Tense (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Tense, coalib.bearlib.aspects.base.aspectbas

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

class CommitMessage.Shortlog.TrailingPeriod (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.TrailingPeriod,
coalib.bearlib.aspects.base.aspectbhase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}
CommitMessage.Shortlog.docs = <coalib.bearlib.aspects.docs.Documentation object>

CommitMessage.Shortlog.parent
alias of CommitMessage

CommitMessage.Shortlog.subaspects = {‘Tense’: <aspectclass ‘Root.Metadata.CommitMessage.Shortlog. T
CommitMessage .docs = <coalib.bearlib.aspects.docs.Documentation object>

CommitMessage.parent
alias of Metadata

CommitMessage.subaspects = {‘Emptiness’: <aspectclass ‘Root.Metadata.CommitMessage.Emptiness’>, ‘Shortlog’

class coalib.bearlib.aspects.Metadata.Emptiness (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Emptiness, coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of CommitMessage

subaspects = {}

class coalib.bearlib.aspects.Metadata.Existence (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Existence,coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Body

subaspects = {}

10 Chapter 1. coalib package

coala Documentation, Release 0.11.0

class coalib.bearlib.aspects.Metadata.FirstCharacter (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.FirstCharacter,
coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

class coalib.bearlib.aspects.Metadata.Length (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Length, coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Body

subaspects = {}

class coalib.bearlib.aspects.Metadata.Metadata (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Metadata, coalib.bearlib.aspects.base.aspectbase

class CommitMessage (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.CommitMessage,
coalib.bearlib.aspects.base.aspectbase

class Body (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Body,coalib.bearlib.aspects.base.aspectbase

class Existence (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Existence,
coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Body

subaspects = {}

class Metadata.CommitMessage.Body.Length (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Length,
coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Body

subaspects = {}
Metadata.CommitMessage.Body .docs = <coalib.bearlib.aspects.docs.Documentation object>

Metadata.CommitMessage.Body.parent
alias of CommitMessage

Metadata.CommitMessage.Body.subaspects = {‘Existence’: <aspectclass ‘Root.Metadata.CommitMes:

1.1. Subpackages 11

coala Documentation, Release 0.11.0

class Metadata.CommitMessage .Emptiness (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Emptiness,

coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of CommitMessage

subaspects = {}

class Metadata.CommitMessage.Shortlog (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Shortlog,

coalib.bearlib.aspects.base.aspectbhase

class ColonExistence (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.ColonExistence,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

class Metadata.CommitMessage.Shortlog.FirstCharacter (language,
**taste_values)
Bases: coalib.bearlib.aspects.Metadata.FirstCharacter,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

class Metadata.CommitMessage.Shortlog.Length (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Length,

coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

class Metadata.CommitMessage.Shortlog. Tense (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Tense,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

class Metadata.CommitMessage.Shortlog.TrailingPeriod (language,
**taste_values)
Bases: coalib.bearlib.aspects.Metadata.TrailingPeriod,

coalib.bearlib.aspects.base.aspectbase

12 Chapter 1. coalib package

coala Documentation, Release 0.11.0

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}
Metadata.CommitMessage.Shortlog.docs = <coalib.bearlib.aspects.docs.Documentation object>

Metadata.CommitMessage.Shortlog.parent
alias of CommitMessage

Metadata.CommitMessage.Shortlog.subaspects = {‘Tense’: <aspectclass ‘Root.Metadata.CommitMe
Metadata.CommitMessage.docs = <coalib.bearlib.aspects.docs.Documentation object>

Metadata.CommitMessage.parent
alias of Metadata

Metadata.CommitMessage.subaspects = {‘Emptiness’: <aspectclass ‘Root.Metadata.CommitMessage.Empti
Metadata.docs = <coalib.bearlib.aspects.docs.Documentation object>

Metadata.parent
alias of Root

Metadata.subaspects = {‘CommitMessage’: <aspectclass ‘Root.Metadata.CommitMessage’>}

class coalib.bearlib.aspects.Metadata.Shortlog (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Shortlog,coalib.bearlib.aspects.base.aspectbase

class ColonExistence (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.ColonExistence,
coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

class Shortlog.FirstCharacter (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.FirstCharacter,
coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

class Shortlog.Length (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Length,coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

1.1. Subpackages 13

coala Documentation, Release 0.11.0

class Shortlog.Tense (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Tense,coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

class Shortlog.TrailingPeriod (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.TrailingPeriod,
coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}
Shortlog.docs = <coalib.bearlib.aspects.docs.Documentation object>

Shortlog.parent
alias of CommitMessage
9

Shortlog.subaspects = {‘Tense’: <aspectclass ‘Root.Metadata.CommitMessage.Shortlog.Tense’>, ‘FirstCharacter’:

class coalib.bearlib.aspects.Metadata.Tense (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Tense,coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

class coalib.bearlib.aspects.Metadata.TrailingPeriod (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.TrailingPeriod,
coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

coalib.bearlib.aspects.Redundancy module

class coalib.bearlib.aspects.Redundancy.Clone (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.Clone,coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Redundancy

subaspects = {}

14 Chapter 1. coalib package

coala Documentation, Release 0.11.0

class coalib.bearlib.aspects.Redundancy.Redundancy (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.Redundancy,coalib.bearlib.aspects.base.aspecthba:

class Clone (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.Clone,coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Redundancy

subaspects = {}

class Redundancy .UnreachableCode (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnreachableCode,

coalib.bearlib.aspects.base.aspectbase

class UnreachableStatement (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnreachableStatement,

coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnreachableCode

subaspects = {}

class Redundancy.UnreachableCode.UnusedFunction (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedFunction,

coalib.bearlib.aspects.base.aspectbhase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnreachableCode
subaspects = {}
Redundancy.UnreachableCode.docs = <coalib.bearlib.aspects.docs.Documentation object>
Redundancy.UnreachableCode.parent
alias of Redundancy
Redundancy.UnreachableCode. subaspects = {‘UnusedFunction’: <aspectclass ‘Root.Redundancy.Unreach:

class Redundancy .UnusedImport (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedImport,

coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Redundancy

subaspects = {}

class Redundancy .UnusedVariable (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedVariable,

coalib.bearlib.aspects.base.aspectbase

1.1. Subpackages 15

coala Documentation, Release 0.11.0

class UnusedGlobalVariable (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedGlobalVariable,

coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnusedVariable

subaspects = {}

class Redundancy.UnusedVariable.UnusedLocalVariable (language,
**¥taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedLocalVariable,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnusedVariable

subaspects = {}

class Redundancy.UnusedVariable.UnusedParameter (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedParameter,

coalib.bearlib.aspects.base.aspectbhase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnusedVariable

subaspects = {}

Redundancy.UnusedVariable.docs = <coalib.bearlib.aspects.docs.Documentation object>

Redundancy.UnusedVariable.parent
alias of Redundancy

Redundancy.UnusedVariable.subaspects = {‘UnusedGlobalVariable’: <aspectclass ‘Root.Redundancy.Unu
Redundancy . docs = <coalib.bearlib.aspects.docs.Documentation object>

Redundancy.parent
alias of Root

Redundancy . subaspects = {‘UnusedImport’: <aspectclass ‘Root.Redundancy.UnusedImport’>, ‘UnreachableCode’:

class coalib.bearlib.aspects.Redundancy.UnreachableCode (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnreachableCode,

coalib.bearlib.aspects.base.aspectbhase

class UnreachableStatement (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnreachableStatement,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnreachableCode

subaspects = {}

class UnreachableCode .UnusedFunction (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedFunction,

coalib.bearlib.aspects.base.aspectbase

16 Chapter 1. coalib package

coala Documentation, Release 0.11.0

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnreachableCode

subaspects = {}
UnreachableCode.docs = <coalib.bearlib.aspects.docs.Documentation object>

UnreachableCode.parent
alias of Redundancy

UnreachableCode.subaspects = {‘UnusedFunction’: <aspectclass ‘Root.Redundancy.UnreachableCode.UnusedFur

class coalib.bearlib.aspects.Redundancy.UnreachableStatement (language,

**taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnreachableStatement,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnreachableCode

subaspects = {}

class coalib.bearlib.aspects.Redundancy.UnusedFunction (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedFunction,
coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnreachableCode

subaspects = {}

class coalib.bearlib.aspects.Redundancy.UnusedGlobalVariable (language,

**taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedGlobalVariable,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnusedVariable

subaspects = {}

class coalib.bearlib.aspects.Redundancy.UnusedImport (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedImport,
coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Redundancy

subaspects = {}

class coalib.bearlib.aspects.Redundancy.UnusedLocalVariable (language,

**taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedLocalVariable,

coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

1.1. Subpackages 17

coala Documentation, Release 0.11.0

parent
alias of UnusedVariable

subaspects = {}

class coalib.bearlib.aspects.Redundancy.UnusedParameter (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedParameter,
coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnusedVariable

subaspects = {}

class coalib.bearlib.aspects.Redundancy.UnusedVariable (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedVariable,
coalib.bearlib.aspects.base.aspectbase

class UnusedGlobalVariable (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedGlobalVariable,
coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnusedVariable

subaspects = {}

class UnusedVariable.UnusedLocalVariable (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedLocalVariable,
coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnusedVariable

subaspects = {}

class UnusedVariable.UnusedParameter (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedParameter,
coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnusedVariable

subaspects = {}
UnusedVariable.docs = <coalib.bearlib.aspects.docs.Documentation object>

UnusedVariable.parent
alias of Redundancy

UnusedVariable.subaspects = {‘UnusedGlobalVariable’: <aspectclass ‘Root.Redundancy.Unused Variable.Unused

18 Chapter 1. coalib package

coala Documentation, Release 0.11.0

coalib.bearlib.aspects.Spelling module

class coalib.bearlib.aspects.Spelling.Spelling (language, **taste_values)
Bases: coalib.bearlib.aspects.Spelling.Spelling,coalib.bearlib.aspects.base.aspectbase

class aspectsYEAH (language, **taste_values)
Bases: coalib.bearlib.aspects.Spelling.aspectsYEAH,

coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Spelling

subaspects = {}
Spelling.docs = <coalib.bearlib.aspects.docs.Documentation object>

Spelling.parent
alias of Root

Spelling.subaspects = {‘aspectsYEAH’: <aspectclass ‘Root.Spelling.aspectsYEAH’>}

class coalib.bearlib.aspects.Spelling.aspectsYEAH (language, **taste_values)
Bases: coalib.bearlib.aspects.Spelling.aspectsYEAH,coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Spelling

subaspects = {}

coalib.bearlib.aspects.base module

class coalib.bearlib.aspects.base.aspectbase (language, **taste_values)
Bases: object

Base class for aspectclasses with common features for their instances.

Derived classes must use coalib.bearlib.aspects.meta.aspectclass as metaclass. This is au-
tomatically handled by coalib.bearlib.aspects.meta.aspectclass.subaspect () decorator.

tastes
Get a dictionary of all taste names mapped to their specific values, including parent tastes.

coalib.bearlib.aspects.collections module

class coalib.bearlib.aspects.collections.aspectlist (seq=())
Bases: 1ist

List-derived container to hold aspects.

1.1. Subpackages 19

coala Documentation, Release 0.11.0

coalib.bearlib.aspects.docs module

class coalib.bearlib.aspects.docs.Documentation (definition: str = *°, example: str =
. example_language: str = °’, impor-
tance_reason: str = °’, fix_suggestions: str

=)
Bases: object

This class contains documentation about an aspectclass. The documentation is consistent if all members are
given:

check_consistency ()

coalib.bearlib.aspects.meta module

exception coalib.bearlib.aspects.meta.aspectTypeError (item)
Bases: TypeError

This error is raised when an object is not an aspectclass or an instance of aspectclass

class coalib.bearlib.aspects.meta.aspectclass (clsname, bases, clsattrs)
Bases: type

Metaclass for aspectclasses.
Root aspectclass is coalib.bearlib.aspects.Root.

subaspect (subcls)
The sub-aspectclass decorator.

See coalib.bearlib.aspects.Root for description and usage.

tastes
Get a dictionary of all taste names mapped to their coalib.bearlib.aspects. Taste instances.

coalib.bearlib.aspects.meta.assert_aspect (ifem)
This function raises aspectTypeError when an object is not an aspectclass or an instance of
aspectclass

coalib.bearlib.aspects.meta.isaspect (item)
This function checks whether or not an object is an aspectclass or an instance of aspectclass

coalib.bearlib.aspects.meta.issubaspect (subaspect, aspect)
This function checks whether or not subaspect is a subaspect of aspect.

coalib.bearlib.aspects.root module

class coalib.bearlib.aspects.root.Root (language, **taste_values)
Bases: coalib.bearlib.aspects.base.aspectbase

The root aspectclass.

20 Chapter 1. coalib package

coala Documentation, Release 0.11.0

Define sub-aspectclasses with class-bound . subaspect decorator. Definition string is taken from doc-string
of decorated class. Remaining docs are taken from a nested docs class. Tastes are defined as class attributes
that are instances of coalib.bearlib.aspects. Taste.

coalib.bearlib.aspects

Formatting

We can now create subaspects like this:

LineLength

int

80, 90, 120 80

The representation will show the full “path” to the leaf of the tree:

We can see, which settings are availables:

And instantiate the aspect with the values, they will be automatically converted:

If no settings are given, the defaults will be taken:

Tastes can also be made available for only specific languages:

coalib.bearlib.languages

. Subpackages 21

coala Documentation, Release 0.11.0

class GreaterTrumpScript
pass

class Greatness

int

1000000, 1000000000, 1000000000000 1000000

1000000000000

>>> Greatness ('Python', min_greatness=1000000000)
Traceback (most recent call last):

coalib.bearlib.aspects.taste.TasteError:
Root .Formatting.Greatness.min_greatness is not available

>>> Greatness ('Python') .min_greatness
Traceback (most recent call last):

coalib.bearlib.aspects.taste.TasteError:
Root.Formatting.Greatness.min_greatness is not available

class Metadata (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Metadata, coalib.bearlib.aspects.base.aspectbas

class CommitMessage (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.CommitMessage,
coalib.bearlib.aspects.base.aspectbhase

class Body (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Body,

coalib.bearlib.aspects.base.aspectbase

class Existence (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Existence,
coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

22 Chapter 1. coalib package

coala Documentation, Release 0.11.0

parent
alias of Body

subaspects = {}

class Root .Metadata.CommitMessage.Body.Length (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Length,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Body

subaspects = {}
Root .Metadata.CommitMessage.Body .docs = <coalib.bearlib.aspects.docs.Documentation object>
Root .Metadata.CommitMessage.Body.parent

alias of CommitMessage

Root .Metadata.CommitMessage.Body.subaspects = {‘Existence’: <aspectclass ‘Root.Metadata.C

class Root .Metadata.CommitMessage .Emptiness (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Emptiness,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of CommitMessage

subaspects = {}

class Root .Metadata.CommitMessage.Shortlog (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Shortlog,
coalib.bearlib.aspects.base.aspectbase

class ColonExistence (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.ColonExistence,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

class Root .Metadata.CommitMessage.Shortlog.FirstCharacter (language,
**raste_values)
Bases: coalib.bearlib.aspects.Metadata.FirstCharacter,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

class Root .Metadata.CommitMessage.Shortlog.Length (language,
**taste_values)
Bases: coalib.bearlib.aspects.Metadata.Length,

coalib.bearlib.aspects.base.aspectbase

. Subpackages 23

coala Documentation, Release 0.11.0

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog

subaspects = {}

class Root .Metadata.CommitMessage.Shortlog. Tense (language,
**taste_values)
Bases: coalib.bearlib.aspects.Metadata.Tense,

coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog
subaspects = {}

class Root .Metadata.CommitMessage.Shortlog.TrailingPeriod (language,
**taste_values)
Bases: coalib.bearlib.aspects.Metadata.TrailingPeriod,

coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog
subaspects = {}
Root .Metadata.CommitMessage.Shortlog.docs = <coalib.bearlib.aspects.docs.Documentation obj
Root .Metadata.CommitMessage.Shortlog.parent
alias of CommitMessage

Root .Metadata.CommitMessage.Shortlog.subaspects = {‘Tense’: <aspectclass ‘Root.Metadata.

Root .Metadata.CommitMessage .docs = <coalib.bearlib.aspects.docs.Documentation object>
Root .Metadata.CommitMessage.parent
alias of Metadata

Root .Metadata.CommitMessage.subaspects = {‘Emptiness’: <aspectclass ‘Root.Metadata.CommitMes
Root .Metadata.docs = <coalib.bearlib.aspects.docs.Documentation object>

Root .Metadata.parent
alias of Root

Root .Metadata.subaspects = {‘CommitMessage’: <aspectclass ‘Root.Metadata.CommitMessage’>}

class Root .Redundancy (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.Redundancy,

coalib.bearlib.aspects.base.aspectbase

class Clone (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.Clone,

coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Redundancy

subaspects = {}

24 Chapter 1. coalib package

coala Documentation, Release 0.11.0

class Root .Redundancy .UnreachableCode (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnreachableCode,

coalib.bearlib.aspects.base.aspectbase

class UnreachableStatement (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnreachableStatement,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnreachableCode

subaspects = {}

class Root . Redundancy .UnreachableCode .UnusedFunction (language,
**taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedFunction,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnreachableCode

subaspects = {}
Root .Redundancy.UnreachableCode.docs = <coalib.bearlib.aspects.docs.Documentation object>
Root .Redundancy.UnreachableCode.parent

alias of Redundancy

Root .Redundancy.UnreachableCode.subaspects = {‘UnusedFunction’: <aspectclass ‘Root.Redundan

class Root .Redundancy .UnusedImport (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedImport,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Redundancy

subaspects = {}

class Root .Redundancy .UnusedVariable (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedVariable,

coalib.bearlib.aspects.base.aspectbase

class UnusedGlobalVariable (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedGlobalVariable,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnusedVariable

subaspects = {}

class Root . Redundancy.UnusedVariable.UnusedLocalVariable (language,
**taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedLocalVariable,

coalib.bearlib.aspects.base.aspectbase

1.1. Subpackages 25

coala Documentation, Release 0.11.0

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnusedvVariable

subaspects = {}

class Root .Redundancy.UnusedVariable.UnusedParameter (language,

**taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedParameter,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnusedvVariable

subaspects = {}
Root.Redundancy.UnusedVariable.docs = <coalib.bearlib.aspects.docs.Documentation object>

Root .Redundancy.UnusedVariable.parent
alias of Redundancy

Root .Redundancy.UnusedVariable.subaspects = {‘UnusedGlobal Variable’: <aspectclass ‘Root.Redu
Root .Redundancy .docs = <coalib.bearlib.aspects.docs.Documentation object>

Root .Redundancy.parent
alias of Root

Root .Redundancy.subaspects = {‘UnusedImport’: <aspectclass ‘Root.Redundancy.UnusedImport’>, ‘Unreac

class Root . Spelling (language, **taste_values)
Bases: coalib.bearlib.aspects.Spelling.Spelling,coalib.bearlib.aspects.base.aspectbas

class aspectsYEAH (language, **taste_values)
Bases: coalib.bearlib.aspects.Spelling.aspectsYEAH,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Spelling

subaspects = {}
Root.Spelling.docs = <coalib.bearlib.aspects.docs.Documentation object>

Root.Spelling.parent
alias of Root

Root.Spelling.subaspects = {‘aspectsYEAH’: <aspectclass ‘Root.Spelling.aspectsYEAH’>}

Root .parent = None

Root . subaspects = {‘Spelling’: <aspectclass ‘Root.Spelling’>, ‘Metadata’: <aspectclass ‘Root.Metadata’>, ‘Redundai

coalib.bearlib.aspects.taste module

coalib.bearlib.aspects.taste.Taste
Defines tastes in aspectclass definitions.

26 Chapter 1. coalib package

coala Documentation, Release 0.11.0

Tastes can be made only available for certain languages by providing a t uple of language identifiers on instan-
tiation:

bool

If no languages are given, they will be available for any language. See coalib.bearlib.aspects.Root
for further usage.

exception coalib.bearlib.aspects.taste.TasteError
Bases: AttributeError

A taste is not allowed to be accessed.

class coalib.bearlib.aspects.taste.TasteMeta
Bases: type

Metaclass for coalib.bearlib.aspects.Taste

Allows defining taste cast type via__getitem__ (), like:

int

Module contents

class coalib.bearlib.aspects.Root (language, **taste_values)
Bases: coalib.bearlib.aspects.base.aspectbase

The root aspectclass.

Define sub-aspectclasses with class-bound . subaspect decorator. Definition string is taken from doc-string
of decorated class. Remaining docs are taken from a nested docs class. Tastes are defined as class attributes
that are instances of coalib.bearlib.aspects. Taste.

coalib.bearlib.aspects

Formatting

We can now create subaspects like this:

LineLength

docs

1.1. Subpackages 27

coala Documentation, Release 0.11.0

int

80, 90, 120 80

The representation will show the full “path” to the leaf of the tree:

We can see, which settings are availables:

And instantiate the aspect with the values, they will be automatically converted:

If no settings are given, the defaults will be taken:

Tastes can also be made available for only specific languages:

co

o

lib.bearlib.languages

GreaterTrumpScript

Greatness

int

1000000, 1000000000, 1000000000000 1000000

1000000000000

28

Chapter 1. coalib package

coala Documentation, Release 0.11.0

>>> Greatness ('Python', min_greatness=1000000000)
Traceback (most recent call last):

coalib.bearlib.aspects.taste.TasteError:
Root.Formatting.Greatness.min_greatness is not available

>>> Greatness ('Python') .min_greatness
Traceback (most recent call last):

coalib.bearlib.aspects.taste.TasteError:
Root .Formatting.Greatness.min_greatness is not available

class Metadata (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Metadata, coalib.bearlib.aspects.base.aspectbas

class CommitMessage (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.CommitMessage,

coalib.bearlib.aspects.base.aspectbase

class Body (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Body,

coalib.bearlib.aspects.base.aspectbase

class Existence (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Existence,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Body

subaspects = {}

class Root .Metadata.CommitMessage.Body .Length (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Length,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Body

subaspects = {}

Root .Metadata.CommitMessage.Body.docs = <coalib.bearlib.aspects.docs.Documentation object>

Root .Metadata.CommitMessage.Body.parent
alias of CommitMessage

Root .Metadata.CommitMessage.Body.subaspects = {‘Existence’: <aspectclass ‘Root.Metadata.C:

class Root .Metadata.CommitMessage .Emptiness (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Emptiness,

coalib.bearlib.aspects.base.aspectbase

1.1.

Subpackages 29

coala Documentation, Release 0.11.0

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of CommitMessage

subaspects = {}

class Root .Metadata.CommitMessage.Shortlog (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.Shortlog,
coalib.bearlib.aspects.base.aspectbase
class ColonExistence (language, **taste_values)
Bases: coalib.bearlib.aspects.Metadata.ColonExistence,
coalib.bearlib.aspects.base.aspectbhase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog
subaspects = {}

class Root .Metadata.CommitMessage.Shortlog.FirstCharacter (language,
**taste_values)
Bases: coalib.bearlib.aspects.Metadata.FirstCharacter,

coalib.bearlib.aspects.base.aspectbhase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog
subaspects = {}

class Root .Metadata.CommitMessage.Shortlog.Length (language,
**taste_values)
Bases: coalib.bearlib.aspects.Metadata.Length,

coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog
subaspects = {}

class Root .Metadata.CommitMessage.Shortlog.Tense (language,
**taste_values)
Bases: coalib.bearlib.aspects.Metadata.Tense,

coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Shortlog
subaspects = {}

class Root .Metadata.CommitMessage.Shortlog.TrailingPeriod (language,
**taste_values)
Bases: coalib.bearlib.aspects.Metadata.TrailingPeriod,

coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

30 Chapter 1. coalib package

coala Documentation, Release 0.11.0

parent
alias of Shortlog

subaspects = {}
Root .Metadata.CommitMessage.Shortlog.docs = <coalib.bearlib.aspects.docs.Documentation obj
Root .Metadata.CommitMessage.Shortlog.parent
alias of CommitMessage
Root .Metadata.CommitMessage.Shortlog.subaspects = {‘Tense’: <aspectclass ‘Root.Metadata.
Root .Metadata.CommitMessage .docs = <coalib.bearlib.aspects.docs.Documentation object>
Root .Metadata.CommitMessage.parent
alias of Metadata

Root .Metadata.CommitMessage.subaspects = {‘Emptiness’: <aspectclass ‘Root.Metadata.CommitMes
Root .Metadata.docs = <coalib.bearlib.aspects.docs.Documentation object>

Root .Metadata.parent
alias of Root

Root .Metadata.subaspects = {‘CommitMessage’: <aspectclass ‘Root.Metadata.CommitMessage’>}

class Root .Redundancy (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.Redundancy,

coalib.bearlib.aspects.base.aspectbase

class Clone (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.Clone,

coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Redundancy

subaspects = {}

class Root .Redundancy .UnreachableCode (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnreachableCode,

coalib.bearlib.aspects.base.aspectbase

class UnreachableStatement (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnreachableStatement,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnreachableCode

subaspects = {}

class Root .Redundancy.UnreachableCode .UnusedFunction (language,
**taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedFunction,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnreachableCode

1.1.

Subpackages 31

coala Documentation, Release 0.11.0

subaspects = {}
Root .Redundancy.UnreachableCode.docs = <coalib.bearlib.aspects.docs.Documentation object>

Root .Redundancy.UnreachableCode.parent
alias of Redundancy

Root .Redundancy.UnreachableCode. subaspects = {‘UnusedFunction’: <aspectclass ‘Root.Redundan

class Root .Redundancy .UnusedImport (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedImport,
coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Redundancy

subaspects = {}

class Root .Redundancy .UnusedVariable (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedVariable,
coalib.bearlib.aspects.base.aspectbase

class UnusedGlobalVariable (language, **taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedGlobalVariable,
coalib.bearlib.aspects.base.aspectbase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnusedvVariable

subaspects = {}

class Root .Redundancy.UnusedVariable.UnusedLocalVariable (language,

**taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedLocalVariable,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnusedvVariable

subaspects = {}

class Root .Redundancy.UnusedVariable.UnusedParameter (language,

**taste_values)
Bases: coalib.bearlib.aspects.Redundancy.UnusedParameter,

coalib.bearlib.aspects.base.aspectbase
docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of UnusedVariable

subaspects = {}
Root .Redundancy.UnusedVariable.docs = <coalib.bearlib.aspects.docs.Documentation object>

Root .Redundancy.UnusedVariable.parent
alias of Redundancy

Root .Redundancy.UnusedVariable.subaspects = {‘UnusedGlobalVariable’: <aspectclass ‘Root.Redu

32 Chapter 1. coalib package

coala Documentation, Release 0.11.0

Root .Redundancy . docs = <coalib.bearlib.aspects.docs.Documentation object>

Root .Redundancy.parent
alias of Root

Root .Redundancy . subaspects = {‘UnusedImport’: <aspectclass ‘Root.Redundancy.UnusedImport’>, ‘Unreac

class Root . Spelling (language, **taste_values)
Bases: coalib.bearlib.aspects.Spelling.Spelling,coalib.bearlib.aspects.base.aspectbas

class aspectsYEAH (language, **taste_values)
Bases: coalib.bearlib.aspects.Spelling.aspectsYEAH,
coalib.bearlib.aspects.base.aspectbhase

docs = <coalib.bearlib.aspects.docs.Documentation object>

parent
alias of Spelling

subaspects = {}
Root.Spelling.docs = <coalib.bearlib.aspects.docs.Documentation object>

Root.Spelling.parent
alias of Root

Root.Spelling.subaspects = {‘aspectsYEAH’: <aspectclass ‘Root.Spelling.aspectsYEAH’>}
Root .parent = None
Root . subaspects = {‘Spelling’: <aspectclass ‘Root.Spelling’>, ‘Metadata’: <aspectclass ‘Root.Metadata’>, ‘Redundai

coalib.bearlib.aspects.Taste
Defines tastes in aspectclass definitions.

Tastes can be made only available for certain languages by providing a t uple of language identifiers on instan-
tiation:

bool

If no languages are given, they will be available for any language. See coalib.bearlib.aspects.Root
for further usage.

exception coalib.bearlib.aspects.TasteError
Bases: AttributeError

A taste is not allowed to be accessed.

class coalib.bearlib.aspects.aspectclass (clsname, bases, clsattrs)
Bases: type

Metaclass for aspectclasses.
Root aspectclass is coalib.bearlib.aspects.Root.

subaspect (subcls)
The sub-aspectclass decorator.

See coalib.bearlib.aspects.Root for description and usage.

1.1. Subpackages 33

coala Documentation, Release 0.11.0

tastes

Get a dictionary of all taste names mapped to their coalib.bearlib.aspects. Taste instances.

class coalib.bearlib.aspects.aspectbase (language, **taste_values)
Bases: object

Base class for aspectclasses with common features for their instances.

Derived classes must use coalib.bearlib.aspects.meta.aspectclass as metaclass. This is au-
tomatically handled by coalib.bearlib.aspects.meta.aspectclass.subaspect () decorator.

tastes

Get a dictionary of all taste names mapped to their specific values, including parent tastes.

exception coalib.bearlib.aspects.aspectTypeError (item)
Bases: TypeError

This error is raised when an object is not an aspectclass or an instance of aspectclass

coalib.bearlib.languages package

Subpackages

coalib.bearlib.languages.definitions package
Submodules

coalib.bearlib.languages.definitions.C module
coalib.bearlib.languages.definitions.CPP module
coalib.bearlib.languages.definitions.CSS module
coalib.bearlib.languages.definitions.CSharp module
coalib.bearlib.languages.definitions.Golang module
coalib.bearlib.languages.definitions.Java module
coalib.bearlib.languages.definitions.JavaScript module
coalib.bearlib.languages.definitions.Python module
coalib.bearlib.languages.definitions.Unknown module
coalib.bearlib.languages.definitions.Vala module
Module contents

This directory holds language definitions.

34 Chapter 1.

coalib package

coala Documentation, Release 0.11.0

Language definitions hold expressions that help defining specific syntax elements for a programming language.
Currently defined keys are:

names extensions comment_delimiter —multiline_comment_delimiters string_delimiters multi-
line_string_delimiters keywords special_chars

coalib.bearlib.languages.documentation package
Submodules
coalib.bearlib.languages.documentation.DocstyleDefinition module

class coalib.bearlib.languages.documentation.DocstyleDefinition.DocstyleDefinition (language:
Str,
doc-
style:
str,
mark-
ers:
(<class
‘col-
lec-
tions.abc.Itera
<class
‘str’>),
meta-
data:

coalib.bearlib.
Bases: object

The DocstyleDefinition class holds values that identify a certain type of documentation comment (for which
language, documentation style/tool used etc.).

class Metadata (param_start, param_end, return_sep)
Bases: tuple

param_end
Alias for field number 1

param_start
Alias for field number O

return_sep
Alias for field number 2

DocstyleDefinition.docstyle
The documentation style/tool used to document code.

Returns A lower-case string defining the docstyle (i.e. “default” or “doxygen”).

static DocstyleDefinition.get_available_definitions ()
Returns a sequence of pairs with (docstyle, language) which are available when using 1oad ().

Returns A sequence of pairs with (docstyle, language).

DocstyleDefinition.language
The programming language.

1.1. Subpackages 35

coala Documentation, Release 0.11.0

Returns A lower-case string defining the programming language (i.e. “cpp” or “python”).

classmethod DocstyleDefinition.load (language: str, docstyle: str, coalang_dir=None)
Loads aDocstyleDefinition from the coala docstyle definition files.

This function considers all settings inside the according coalang-files as markers, except param_start,
param_end and return_sep which are considered as special metadata markers.

Note: When placing new coala docstyle definition files, these must consist of only lowercase letters and
end with . coalang!

Parameters

* language — The case insensitive programming language of the documentation comment
as a string.

* docstyle - The case insensitive documentation style/tool used to document code, e.g.
"default" or "doxygen".

* coalang_dir — Path to directory with coalang docstyle definition files. This replaces
the default path if given.

Raises
* FileNotFoundError — Raised when the given docstyle was not found.
* KeyError — Raised when the given language is not defined for given docstyle.
Returns The DocstyleDefinition for given language and docstyle.
DocstyleDefinition.markers
A tuple of marker sets that identify a documentation comment.

Marker sets consist of 3 entries where the first is the start-marker, the second one the each-line
marker and the last one the end-marker. For example a marker tuple with a single marker set
(("/%*","x","sx/"),) would match following documentation comment:

It’s also possible to supply an empty each-line marker ((" /x*","", "x/")):

Markers are matched “greedy”, that means it will match as many each-line markers as possible. IL.e. for
("///", "///","///")):

Returns A tuple of marker/delimiter string tuples that identify a documentation comment.

DocstyleDefinition.metadata
A namedtuple of certain attributes present in the documentation.

36 Chapter 1. coalib package

coala Documentation, Release 0.11.0

These attributes are used to define parts of the documentation.

coalib.bearlib.languages.documentation.DocumentationComment module

class coalib.bearlib.languages.documentation.DocumentationComment .DocumentationComment (documer

doc-
style_de,
in-
dent,
marker,
range)

Bases: object

The DocumentationComment holds information about a documentation comment inside source-code, like posi-

tion etc.

class Description (desc)
Bases: tuple

desc
Alias for field number 0

class DocumentationComment . Parameter (name, desc)
Bases: tuple

desc
Alias for field number 1

name
Alias for field number 0

class DocumentationComment .ReturnValue (desc)
Bases: tuple

desc
Alias for field number O

DocumentationComment .assemble ()
Assembles parsed documentation to the original documentation.

This function assembles the whole documentation comment, with the given markers and indentation.
DocumentationComment .docstyle

classmethod DocumentationComment . from_metadata (doccomment, docstyle_definition,

marker, indent, range)
Assembles a list of parsed documentation comment metadata.

This function just assembles the documentation comment itself, without the markers and indentation.

from coalib.bearlib.languages.documentation.DocumentationComment \

import DocumentationComment

from coalib.bearlib.languages.documentation.DocstyleDefinition \

import DocstyleDefinition

from coalib.results.TextRange import

str

1.1. Subpackages 37

coala Documentation, Release 0.11.0

Parameters
* doccomment — The list of parsed documentation comment metadata.

* docstyle_definition — The DocstyleDefinition instance that defines what
docstyle is being used in a documentation comment.

¢ marker — The markers to be used in the documentation comment.
¢ indent - The indentation to be used in the documentation comment.
* range — The range of the documentation comment.

Returns A DocumentationComment instance of the assembled documentation.

DocumentationComment .language
DocumentationComment .metadata

DocumentationComment .parse ()
Parses documentation independent of language and docstyle.

Returns The list of all the parsed sections of the documentation. Every section is a namedtuple
of either Description or Parameter or ReturnValue.

Raises Not ImplementedError — When no parsing method is present for the given language
and docstyle.

coalib.bearlib.languages.documentation.DocumentationExtraction module

coalib.bearlib.languages.documentation.DocumentationExtraction.extract_documentation (content,
lan-

guage,
doc-

style)
Extracts all documentation texts inside the given source-code-string using the coala docstyle definition files.

The documentation texts are sorted by their order appearing in content.

For more information about how documentation comments are identified and extracted, see DocstyleDefini-
tion.doctypes enumeration.

Parameters

* content — The source-code-string where to extract documentation from. Needs to be a
list or tuple where each string item is a single line (including ending whitespaces like \n).

* language — The programming language used.
* docstyle — The documentation style/tool used (e.g. doxygen).
Raises
* FileNotFoundError — Raised when the docstyle definition file was not found.

* KeyError — Raised when the given language is not defined in given docstyle.

38 Chapter 1. coalib package

coala Documentation, Release 0.11.0

* ValueError — Raised when a docstyle definition setting has an invalid format.
Returns An iterator returning each DocumentationComment found in the content.

coalib.bearlib.languages.documentation.DocumentationExtraction.extract_documentation_with_1

Extracts all documentation texts inside the given source-code-string.

Parameters

* content — The source-code-string where to extract documentation from. Needs to be a
list or tuple where each string item is a single line (including ending whitespaces like \n).

* docstyle_definition — The DocstyleDefinition instance that defines what
docstyle is being used in the documentation.

Returns An iterator returning each DocumentationComment found in the content.
Module contents

Provides facilities to extract, parse and assemble documentation comments for different languages and documentation

tools.

Submodules
coalib.bearlib.languages.Language module

class coalib.bearlib.languages.Language . Language (*versions)
Bases: object

This class defines programming languages and their versions.

You can define a new programming language as follows:

TrumpScript

From a bear, you can simply parse the user given language string to get the instance of the Language you desire:

Traceback (most recent call last):

ValueError:

The attributes are not accessible unless you have selected one - and only one - version of your language:

1.1. Subpackages 39

coala Documentation, Release 0.11.0

3.3, 3.4

Traceback (most recent call last):

AttributeError:

If you don’t know which version is the right one, just use this:

To see which attributes are available, use the att ributes property:

3.3

You can access a dictionary of the attribute values for every version from the class:

Any nonexistent item will of course not be served:

Traceback (most recent call last):

AttributeError

You now know the most important parts for writing a bear using languages. Read ahead if you want
to know more about working with multiple versions of programming languages as well as derivative
languages!

We can define derivative languages as follows:

TrumpScriptDerivative

We can get an instance via this syntax as well:

40 Chapter 1. coalib package

coala Documentation, Release 0.11.0

As you see, you can use the __qualname__ property. This will also affect the string representation and work as
an implicit alias:

w
i

STr

We can specify the version by instantiating the TrumpScript class now:

str 3.6

You can also define ranges of versions of languages:

3.3 3.5

Those can be combined by the or operator:

3.6 2

The __contains__ operator of the class is defined as well for strings and instances. This is case insensitive and
aliases are allowed:

w
[e))

This also works on instances:

N
~J

3.5 3

w
()]
w

Any undefined language will obviously not be available:

Traceback (most recent call last):

AttributeError

1.1. Subpackages a

coala Documentation, Release 0.11.0

attributes
Retrieves the names of all attributes that are available for this language.

get_default_version /()
Retrieves the latest version the user would want to choose from the given versions in self.

(At a later point this might also retrieve a default version specifiable by the language definition, so keep
using this!)

class coalib.bearlib.languages.Language .LanguageMeta

Bases: type
Metaclass for coalib.bearlib.languages.Language.Language.

Allows it being used as a decorator as well as implements the __contains__ operation and stores all languages
created with the decorator.

The operators are defined on the class as well, so you can do the following:

SomeLang
2.7, 3.3, 3.4, 3.5, 3.6

w
fisy

1.0
Traceback (most recent call last):

ValueError:

class coalib.bearlib.languages.Language .LanguageUberMeta

Bases: type
This class is used to hide the all attribute from the Language class.

all = [<class ‘coalib.bearlib.languages.L.anguage.Unknown’>, <class ‘coalib.bearlib.languages.Language.C’>, <class ‘coa

class coalib.bearlib.languages.Language .Languages

Bases: tuple

A tuple-based container for coalib.bearlib.languages.Language instances. It supports language
identifiers in any format accepted by Language [...]:

3

It provides ___contains__ () for checking if a given language identifier is included:

42

Chapter 1. coalib package

coala Documentation, Release 0.11.0

coalib.bearlib.languages.Language.limit_versions (language, limit, operator)
Limits given languages with the given operator:

Parameters

* language — A Language instance.

e limit — A number to limit the versions.

* operator — The operator to use for the limiting.
Returns A new Language instance with limited versions.
Raises ValueError — If no version is left anymore.

coalib.bearlib.languages.Language.parse_lang_str (string)
Parses any given language string into name and a list of float versions (ignores leading whitespace):

Traceback (most recent call last):

ValueError:

coalib.bearlib.languages.LanguageDefinition module

class coalib.bearlib.languages.LanguageDefinition.LanguageDefinition (language:
str,

coalang_dir=None)
Bases: coalib.bearlib.abstractions.SectionCreatable.SectionCreatable

This class is deprecated! Use the Language class instead.

A Language Definition holds constants which may help parsing the language. If you want to write a bear you’ll
probably want to use those definitions to keep your bear independent of the semantics of each language.

You can easily get your language definition by just creating it with the name of the language desired:

list

For some languages aliases exist, the name is case insensitive; they will behave just like before and return
settings:

dict

1.1. Subpackages 43

coala Documentation, Release 0.11.0

dict

If no language exists, you will geta FileNotFoundError:

Traceback (most recent call last):

FileNotFoundError

Custom coalangs are no longer supported. You can simply register your languages to the Languages decorator.
When giving a custom coalang directory a warning will be emitted and it will attempt to load the given Language
anyway through conventional means:

Traceback (most recent call last):

FileNotFoundError

If you need a custom language, just go like this:

MyLittlePony

int

But seriously, just use Language - and mind that it’s already typed:

Module contents

This directory holds means to get generic information for specific languages.

coalib.bearlib.naming_conventions package
Module contents

coalib.bearlib.naming_conventions.to_camelcase (string)
Converts the given string to camel-case.

44 Chapter 1. coalib package

coala Documentation, Release 0.11.0

Parameters string — The string to convert.

Returns The camel-cased string.

coalib.bearlib.naming_conventions.to_kebabcase (string)
Converts the given string to kebab-case.

Parameters string - The string to convert.

Returns The kebab-cased string.

coalib.bearlib.naming_conventions.to_pascalcase (string)
Converts the given to string pascal-case.

Parameters string — The string to convert.

Returns The pascal-cased string.

coalib.bearlib.naming_conventions.to_snakecase (string)
Converts the given string to snake-case.

1.1. Subpackages 45

coala Documentation, Release 0.11.0

Parameters string — The string to convert.

Returns The snake-cased string.

coalib.bearlib.naming_conventions.to_spacecase (string)

Converts the given string to space-case.

Parameters string — The string to convert.

Returns The space-cased string.

coalib.bearlib.spacing package

Submodules

coalib.bearlib.spacing.SpacingHelper module

class coalib.bearlib.spacing.SpacingHelper.SpacingHelper (fab_width: int = 4)
Bases: coalib.bearlib.abstractions.SectionCreatable.SectionCreatable

DEFAULT_ TAB_WIDTH =4

get_indentation (line: str)
Checks the lines indentation.

Parameters line — A string to check for indentation.
Returns The indentation count in spaces.

replace_spaces_with_tabs (line: str)

Replaces spaces with tabs where possible. However in no case only one space will be replaced by a tab.

Example: ” a_text another” will be converted to ” a_text another”, assuming the tab_width is set to 4.

Parameters line — The string with spaces to replace.
Returns The converted string.

replace_tabs_with_spaces (line: str)
Replaces tabs in this line with the appropriate number of spaces.

39 99 93 9

Example: will be converted to
Parameters line — The string with tabs to replace.
Returns A string with no tabs.

yield_ tab_lengths (input: str)
Yields position and size of tabs in a input string.

, assuming the tab_width is set to 4.

46

Chapter 1. coalib package

coala Documentation, Release 0.11.0

Parameters input — The string with tabs.

Module contents

Module contents

The bearlib is an optional library designed to ease the task of any Bear. Just as the rest of coala the bearlib is designed
to be as easy to use as possible while offering the best possible flexibility.

coalib.bearlib.deprecate_bear (bear)

Use this to deprecate a bear. Say we have a bear:

SomeBear
run

print

To change the name from SomeOldBear to SomeBear you can keep the SomeOldBear . py around with
those contents:

SomeOldBear

Now let’s run the bear:

[0)
e
[0

Parameters bear — An old bear class that inherits from the new one (so it gets its methods and can
just contain a pass.)

Returns A bear class that warns about deprecation on use.

coalib.bearlib.deprecate_settings (**depr_args)

The purpose of this decorator is to allow passing old settings names to bears due to the heavy changes in their
names.

run
print

Now we can simply call the bear with the deprecated setting, we’ll get a warning - but it still works!

SYS

This example represents the case where the old setting name needs to be modified to match the new one.

1.1.

Subpackages 47

coala Documentation, Release 0.11.0

func
print

This example represents the case where the old and new settings are provided to the function.

run

print

run
print

Note that messages are cached. So the same message won’t be printed twice: >>> run(old="Hello!’,
new="Hello!”) Hello!

Multiple deprecations can be provided for the same setting. The modifier function for each deprecated setting
can be given as a value in a dict where the deprecated setting is the key. A default modifier may be specified at
the end of the deprecated settings tuple.

run

print

The metadata for coala has been adjusted as well:

list

list

Parameters depr_args — A dictionary of settings as keys and their deprecated names as values.

48 Chapter 1. coalib package

coala Documentation, Release 0.11.0

coalib.bears package

Submodules

coalib.bears.BEAR_KIND module

coalib.bears.Bear module

class coalib.bears.Bear.Bear (section: coalib.settings.Section.Section, message_queue, timeout=0)

Bases: pyprint.Printer.Printer, coalib.output.printers.LogPrinter.LogPrinterMixin

A bear contains the actual subroutine that is responsible for checking source code for certain specifications.
However it can actually do whatever it wants with the files it gets. If you are missing some Result type, feel free
to contact us and/or help us extending the coalib.

This is the base class for every bear. If you want to write an bear, you will probably want to look at the
GlobalBear and LocalBear classes that inherit from this class. In any case you’ll want to overwrite at least the
run method. You can send debug/warning/error messages through the debug(), warn(), err() functions. These
will send the appropriate messages so that they are outputted. Be aware that if you use err(), you are expected
to also terminate the bear run-through immediately.

Settings are available at all times through self.section.

To indicate which languages your bear supports, just give it the LANGUAGES value which should be a set of
string(s):

from dependency_management.requirements.PackageRequirement import

from dependency_management.requirements.PipRequirement import

class SomeBear

To indicate the requirements of the bear, assign REQUIREMENTS a set with instances of
PackageRequirements.

class SomeBear

If your bear uses requirements from a manager we have a subclass from, you can use the subclass, such as
PipRequirement, without specifying manager:

class SomeBear

To specify additional attributes to your bear, use the following:

class SomeBear

If the maintainers are the same as the authors, they can be omitted:

1.1. Subpackages 49

coala Documentation, Release 0.11.0

If your bear needs to include local files, then specify it giving strings containing relative file paths to the IN-
CLUDE_LOCAL_FILES set:

SomeBear

To keep track easier of what a bear can do, simply tell it to the CAN_FIX and the CAN_DETECT sets. Possible
values:

Specifying something to CAN_FIX makes it obvious that it can be detected too, so it may be omitted:

SomeBear

list (sorted

Every bear has a data directory which is unique to that particular bear:

SomeBear

SomeOtherBear

BEAR_DEPS contains bear classes that are to be executed before this bear gets executed. The results of these
bears will then be passed to the run method as a dict via the dependency_results argument. The dict will have
the name of the Bear as key and the list of its results as results:

Every bear resides in some directory which is specified by the source_location attribute:

SomeBear

Every linter bear makes use of an executable tool for its operations. The SEE_MORE attribute provides a link
to the main page of the linter tool:

50

Chapter 1. coalib package

coala Documentation, Release 0.11.0

PyLintBear

In the future, bears will not survive without aspects. aspects are defined as part of the class statement’s
parameter list. According to the classic CAN_DETECT and CAN_FIX attributes, aspects can either be only
'detect '-able or also ' £ix'-able:

coalib.bearlib.aspects.Metadata

aspectsCommitBear

ASCIINEMA URL=*
AUTHORS = set()
AUTHORS_EMATILS = set()
BEAR_DEPS = set()
CAN_DETECT = set()
CAN_FIX=set()
INCLUDE_LOCAL_FILES = set()
LANGUAGES = set()

LICENSE = ¢’

MAINTAINERS = set()
MAINTAINERS_EMAILS = set()
PLATFORMS = {‘any’}
REQUIREMENTS = set()
SEE_MORE = ¢’

can_detect =set()

classmethod check_prerequisites ()
Checks whether needed runtime prerequisites of the bear are satisfied.

This function gets executed at construction.

Section value requirements shall be checked inside the run method. >>> from depen-
dency_management.requirements.PipRequirement import (... PipRequirement) >>> class Some-
Bear(Bear): ... REQUIREMENTS = {PipRequirement(‘pip’)}

1.1. Subpackages 51

coala Documentation, Release 0.11.0

SomeOtherBear

anotherBear

Returns True if prerequisites are satisfied, else False or a string that serves a more detailed
description of what’s missing.
data_dir = ‘‘home/docs/.local/share/coala-bears/Bear’

download_cached_file (url, filename)
Downloads the file if needed and caches it for the next time. If a download happens, the user will be
informed.

Take a sane simple bear:

queue

We can now carelessly query for a neat file that doesn’t exist yet:

oS

If we download it again, it’ll be much faster as no download occurs:

Parameters
¢ url — The URL to download the file from.
e filename - The filename it should get, e.g. “test.txt”.

Returns A full path to the file ready for you to use!

execute (*args, **kwargs)

get_config dir ()
Gives the directory where the configuration file is.

Returns Directory of the config file.
classmethod get_metadata ()

Returns Metadata for the run function. However parameters like sel1f or parameters implicitly
used by coala (e.g. filename for local bears) are already removed.

52 Chapter 1. coalib package

coala Documentation, Release 0.11.0

classmethod get_non_optional_settings (recurse=True)
This method has to determine which settings are needed by this bear. The user will be prompted for needed
settings that are not available in the settings file so don’t include settings where a default value would do.

Note: This function also queries settings from bear dependencies in recursive manner. Though circular
dependency chains are a challenge to achieve, this function would never return on them!

Parameters recurse — Get the settings recursively from its dependencies.
Returns A dictionary of needed settings as keys and a tuple of help text and annotation as values.
static kind ()
Returns The kind of the bear
log_message (log_message, timestamp=None, **kwargs)
maintainers = set()
maintainers_emails = set()

classmethod missing_dependencies (Ist)
Checks if the given list contains all dependencies.

Parameters 1lst — A list of all already resolved bear classes (not instances).
Returns A set of missing dependencies.
name = ‘Bear’

new_result
Returns a partial for creating a result with this bear already bound.

run (*args, *, dependency_results=None, **kwargs)
run_bear from section (args, kwargs)

static setup_dependencies ()
This is a user defined function that can download and set up dependencies (via download_cached_file or
arbitrary other means) in an OS independent way.

source_location = ‘‘home/docs/checkouts/readthedocs.org/user_builds/coala-api/checkouts/stable/coalib/bears/Bear.j

coalib.bears.GlobalBear module

class coalib.bears.GlobalBear.GlobalBear (file_dict, section, message_queue, timeout=0)
Bases: coalib.bears.Bear.Bear
A GlobalBear analyzes semantic facts across several files.

The results of a GlobalBear will be presented grouped by the origin Bear. Therefore Results spanning across
multiple files are allowed and will be handled correctly.

If you are inspecting a single file at a time, you should consider using a LocalBear.
static kind ()

run (*args, *, dependency_results=None, **kwargs)
Handles all files in file_dict.

Parameters dependency_results — The dictionary of {bear name: result list}.
Returns A list of Result type.

See coalib.bears.Bear for run method description.

1.1. Subpackages 53

coala Documentation, Release 0.11.0

coalib.bears.LocalBear module

class coalib.bears.LocalBear.LocalBear (section: coalib.settings.Section.Section, mes-

sage_queue, timeout=0)
Bases: coalib.bears.Bear.Bear

A LocalBear is a Bear that analyzes only one file at once. It therefore can not analyze semantical facts over
multiple files.

This has the advantage that it can be highly parallelized. In addition, the results from multiple bears for one file
can be shown together for that file, which is better to grasp for the user. coala takes care of all that.

Examples for LocalBear’s could be:

*A SpaceConsistencyBear that checks every line for trailing whitespaces, tabs, etc.

*A VariableNameBear that checks variable names and constant names for certain conditions
classmethod get_metadata ()
static kind ()

run (filename, file, *args, *, dependency_results=None, **kwargs)
Handles the given file.

Parameters
* filename — The filename of the file
e file — The file contents as string array

Returns A list of Result

coalib.bears.meta module

class coalib.bears.meta.bearclass (clsname, bases, clsattrs, *varargs, *, aspects=None)
Bases: type
Metaclass for coalib.bears.Bear.Bear and therefore all bear classes.
Pushing bears into the future... ;)

aspects = defaultdict(<function bearclass.<lambda>>, {})

Module contents
coalib.collecting package
Submodules
coalib.collecting.Collectors module

coalib.collecting.Collectors.collect_all_bears_from_sections (sections,

log_printer)
Collect all kinds of bears from bear directories given in the sections.

Parameters
* sections — List of sections so bear_dirs are taken into account

* log_printer — Log_printer to handle logging

54 Chapter 1. coalib package

coala Documentation, Release 0.11.0

Returns Tuple of dictionaries of local and global bears. The dictionary key is section class and
dictionary value is a list of Bear classes

coalib.collecting.Collectors.collect_bears (bear_dirs, bear_globs, kinds, log_printer,

warn_if _unused_glob=True)
Collect all bears from bear directories that have a matching kind matching the given globs.

Parameters
* bear_dirs — Directory name or list of such that can contain bears.
* bear_ globs - Globs of bears to collect.
* kinds — List of bear kinds to be collected.
* log_printer —log_printer to handle logging.

* warn_if unused glob - True if warning message should be shown if a glob didn’t
give any bears.

Returns Tuple of list of matching bear classes based on kind. The lists are in the same order as
kinds.

coalib.collecting.Collectors.collect_dirs (dir_paths, ignored_dir_paths=None)
Evaluate globs in directory paths and return all matching directories

Parameters

* dir_paths — File path or list of such that can include globs

* ignored_dir_paths — List of globs that match to-be-ignored dirs
Returns List of paths of all matching directories

coalib.collecting.Collectors.collect_f£files (file_paths, log_printer, ig-
nored_file_paths=None,

limit_file_paths=None)
Evaluate globs in file paths and return all matching files

Parameters
* file_ paths — File path or list of such that can include globs
* ignored_file paths — List of globs that match to-be-ignored files
* limit_file_paths — List of globs that the files are limited to
Returns List of paths of all matching files

coalib.collecting.Collectors.collect_registered bears_dirs (entrypoint)
Searches setuptools for the entrypoint and returns the bear directories given by the module.

Parameters entrypoint — The entrypoint to find packages with.
Returns List of bear directories.

coalib.collecting.Collectors.filter capabilities_by_languages (bears, lan-

guages)
Filters the bears capabilities by languages.

Parameters
* bears — Dictionary with sections as keys and list of bears as values.

* languages — Languages that bears are being filtered on.

1.1. Subpackages 55

coala Documentation, Release 0.11.0

Returns New dictionary with languages as keys and their bears capabilities as values. The capabili-
ties are stored in a tuple of two elements where the first one represents what the bears can detect,
and the second one what they can fix.

coalib.collecting.Collectors.filter_ section_bears_by_ languages (bears, lan-

guages)
Filters the bears by languages.

Parameters
* bears — The dictionary of the sections as keys and list of bears as values.
* languages — Languages that bears are being filtered on.
Returns New dictionary with filtered out bears that don’t match any language from languages.

coalib.collecting.Collectors.get_all bears()
Get a 1ist of all available bears.

coalib.collecting.Collectors.get_all_bears_names ()
Get a 1ist of names of all available bears.

coalib.collecting.Collectors.icollect (file_paths, ignored_globs=None, match_cache={})
Evaluate globs in file paths and return all matching files.

Parameters
» file paths — File path or list of such that can include globs
* ignored_globs — List of globs to ignore when matching files
* match_cache - Dictionary to use for caching results
Returns Iterator that yields tuple of path of a matching file, the glob where it was found

coalib.collecting.Collectors.icollect_bears (bear_dir_glob, bear_globs, kinds,

log_printer)
Collect all bears from bear directories that have a matching kind.

Parameters
* bear_dir_glob - Directory globs or list of such that can contain bears
* bear_globs — Globs of bears to collect
* kinds — List of bear kinds to be collected
* log_printer — Log_printer to handle logging

Returns Iterator that yields a tuple with bear class and which bear_glob was used to find that bear
class.

coalib.collecting.Dependencies module
exception coalib.collecting.Dependencies.CircularDependencyError
Bases: Exception

classmethod for_bears (bears)
Creates the CircularDependencyError with a helpful message about the dependency.

coalib.collecting.Dependencies.resolve (bears)
Collects all dependencies of the given bears. This will also remove duplicates.

Parameters bears — The given bears. Will not be modified.

56 Chapter 1. coalib package

coala Documentation, Release 0.11.0

Returns The new list of bears, sorted so that it can be executed sequentially without dependency
issues.

coalib.collecting.Importers module

coalib.collecting.Importers.iimport_objects (file_paths, names=None, types=None, su-
pers=None, attributes=None, local=False,

suppress_output=False)
Import all objects from the given modules that fulfill the requirements

Parameters

» file_ paths — File path(s) from which objects will be imported.

* names — Name(s) an objects need to have one of.

* types — Type(s) an objects need to be out of.

* supers — Class(es) objects need to be a subclass of.

* attributes — Attribute(s) an object needs to (all) have.

* local - If True: Objects need to be defined in the file they appear in to be collected.

* suppress_output — Whether console output from stdout shall be suppressed or not.
Returns An iterator that yields all matching python objects.

Raises Exception — Any exception that is thrown in module code or an ImportError if paths are
erroneous.

coalib.collecting.Importers.import_objects (file_paths, names=None, types=None, su-
pers=None, attributes=None, local=False,

verbose=False)
Import all objects from the given modules that fulfill the requirements

Parameters

» file_ paths - File path(s) from which objects will be imported

* names — Name(s) an objects need to have one of

* types — Type(s) an objects need to be out of

* supers — Class(es) objects need to be a subclass of

* attributes — Attribute(s) an object needs to (all) have

* local - if True: Objects need to be defined in the file they appear in to be collected
Returns list of all matching python objects

Raises Exception — Any exception that is thrown in module code or an ImportError if paths are
erroneous.

coalib.collecting.Importers.object_defined_in (0byj, file_path)
Check if the object is defined in the given file.

Builtins are always defined outside any given file:

1.1. Subpackages

57

coala Documentation, Release 0.11.0

False

Parameters
* obj - The object to check.
* file path — The path it might be defined in.

Returns True if the object is defined in the file.

Module contents

coalib.core package

Submodules

coalib.core.Bear module

class coalib.core.Bear.Bear (section: coalib.settings.Section.Section, file_dict: dict)

Bases: object

A bear contains the actual subroutine that is responsible for checking source code for certain specifications.
However, it can actually do whatever it wants with the files it gets.

This is the base class for every bear. If you want to write a bear, you will probably want to look at the
ProjectBear and FileBear classes that inherit from this class.

To indicate which languages your bear supports, just give it the LANGUAGES value which should be a set of
string(s):

class SomeBear

To indicate the requirements of the bear, assign REQUIREMENTS a set with instances of
PackageRequirements.

from dependency_management.requirements.PackageRequirement import

class SomeBear

If your bear uses requirements from a manager we have a subclass from, you can use the subclass, such as
PipRequirement, without specifying manager:

from dependency_management.requirements.PipRequirement import

class SomeBear

To specify additional attributes to your bear, use the following:

class SomeBear

58 Chapter 1. coalib package

coala Documentation, Release 0.11.0

If the maintainers are the same as the authors, they can be omitted:

SomeBear

If your bear needs to include local files, then specify it giving strings containing relative file paths to the IN-
CLUDE_LOCAL_FILES set:

SomeBear

To keep track easier of what a bear can do, simply tell it to the CAN_FIX and the CAN_DETECT sets. Possible
values are:

Specifying something to CAN_F I X makes it obvious that it can be detected too, so it may be omitted:

SomeBear

sorted

Every bear has a data directory which is unique to that particular bear:

SomeBear

SomeOtherBear

A bear can be dependent from other bears. BEAR_DEPS contains bear classes that are to be executed before
this bear gets executed. The results of these bears will then be passed inside self.dependency_results
as a dict. The dict will have the name of the bear as key and a list of its results as values:

SomeBear
SomeOtherBear

ASCIINEMA URL="*

AUTHORS = set()

1.1.

Subpackages 59

coala Documentation, Release 0.11.0

AUTHORS_EMAILS = set()
BEAR_DEPS = set()
CAN_DETECT = set()
CAN_FIX=set()
INCLUDE_LOCAL_FILES = set()
LANGUAGES = set()
LICENSE = ¢’

MAINTAINERS = set()
MAINTAINERS_ EMAILS = set()
PLATFORMS = {‘any’}
REQUIREMENTS = set()

analyze (*args, **kwargs)
Performs the code analysis.

Returns An iterable of results.
can_detect =set()

classmethod check_prerequisites ()
Checks whether needed runtime prerequisites of the bear are satisfied.

This function gets executed at construction.

Section value requirements shall be checked inside the run method.

dependency_management . requirements.PipRequirement

SomeBear

SomeOtherBear

Returns True if prerequisites are satisfied, else False or a string that serves a more detailed
description of what’s missing.
data_dir = ‘‘home/docs/.local/share/coala-bears/Bear’

dependency_results
Contains all dependency results.

This variable gets set during bear execution from the core and can be used from analyze.

Modifications to the returned dictionary while the core is running leads to undefined behaviour.

60

Chapter 1. coalib package

coala Documentation, Release 0.11.0

Returns A dictionary with bear-types as keys and their results received.

classmethod download_cached_file (url, filename)
Downloads the file if needed and caches it for the next time. If a download happens, the user will be
informed.

Take a sane simple bear:

We can now carelessly query for a neat file that doesn’t exist yet:

oS

If we download it again, it’ll be much faster as no download occurs:

Parameters
e url — The URL to download the file from.
* filename — The filename it should get, e.g. “test.txt”.
Returns A full path to the file ready for you to use!
execute_task (args, kwargs)
Executes a task.
By default returns a list of results collected from this bear.
This function has to return something that is picklable to make bears work in multi-process environments.
Parameters
* args — The arguments of a task.
* kwargs — The keyword-arguments of a task.

Returns A list of results from the bear.

1.1.

Subpackages 61

coala Documentation, Release 0.11.0

generate_tasks ()
This method is responsible for providing the job arguments analyze gets called with.

Returns An iterable containing the positional and keyword arguments organized in pairs:
(args—-tuple, kwargs—-dict)

get_config dir ()
Gives the directory where the configuration file resides.

Returns Directory of the config file.
classmethod get_metadata ()

Returns Metadata for the analyze function extracted from its signature. Excludes parameter
self.

classmethod get_non_optional_settings ()
This method has to determine which settings are needed by this bear. The user will be prompted for needed
settings that are not available in the settings file so don’t include settings where a default value would do.

Note: This function also queries settings from bear dependencies in recursive manner. Though circular
dependency chains are a challenge to achieve, this function would never return on them!

Returns A dictionary of needed settings as keys and a tuple of help text and annotation as values
maintainers = set()
maintainers_emails = set()
name = ‘Bear’

new_result
Returns a partial for creating a result with this bear already bound.

static setup_dependencies ()
This is a user defined function that can download and set up dependencies (via download_cached_file or
arbitrary other means) in an OS independent way.

source_location = ‘‘home/docs/checkouts/readthedocs.org/user_builds/coala-api/checkouts/stable/coalib/core/Bear.p)

coalib.core.CircularDependencyError module
exception coalib.core.CircularDependencyError.CircularDependencyError (node=None)
Bases: Exception

An error identifying a circular dependency.

coalib.core.Core module
coalib.core.Core.cleanup_bear (bear, running_tasks, event_loop)
Cleans up state of an ongoing run for a bear.
oIf the given bear has no running tasks left, it removes the bear from the running_tasks dict.

*Checks whether there are any remaining tasks, and quits the event loop accordingly if none are left.

Parameters
* bear — The bear to clean up state for.
* running_tasks — The dict of running-tasks.

* event_loop - The event-loop tasks are scheduled on.

62 Chapter 1. coalib package

coala Documentation, Release 0.11.0

coalib.core.Core.finish_task (bear, result_callback, running_tasks, event_loop, executor, task)
The callback for when a task of a bear completes. It is responsible for checking if the bear completed its
execution and the handling of the result generated by the task.

Parameters
* bear — The bear that the task belongs to.
e result_callback — A callback function which is called when results are available.
* running_tasks — Dictionary that keeps track of the remaining tasks of each bear.
* event_loop — The asyncio event loop bear-tasks are scheduled on.
* executor — The executor to which the bear tasks are scheduled.
* task — The task that completed.

coalib.core.Core.run (bears, result_callback)
Runs a coala session.

Parameters
e bears — The bear instances to run.

* result_callback — A callback function which is called when results are available.
Must have following signature:

result_callback

coalib.core.Core.schedule_bears (bears, result_callback, event_loop, running_tasks, executor)
Schedules the tasks of bears to the given executor and runs them on the given event loop.

Parameters
* bears — A list of bear instances to be scheduled onto the process pool.
e result_callback — A callback function which is called when results are available.
* event_loop — The asyncio event loop to schedule bear tasks on.

* running_tasks — Tasks that are already scheduled, organized in a dict with bear in-
stances as keys and asyncio-coroutines as values containing their scheduled tasks.

¢ executor — The executor to which the bear tasks are scheduled.

coalib.core.DependencyTracker module

class coalib.core.DependencyTracker .DependencyTracker
Bases: object
A DependencyTracker allows to register and manage dependencies between objects.
This class uses a directed graph to track relations.

Add a dependency relation between two objects:

object
object

1.1. Subpackages 63

coala Documentation, Release 0.11.0

This would define that object1 is dependent on object?2.

If you define that object 2 has its dependency duty fulfilled, you can resolve it:

This returns all objects that are now freed, meaning they have no dependencies any more.

object

The ones who instantiate a DependencyTracker are responsible for resolving dependencies in the right

order. Dependencies which are itself dependent will be forcefully resolved and removed from their according
dependencies too.

add (dependency, dependant)
Add a dependency relation.

This function does not check for circular dependencies.

Parameters

* dependency — The object that is the dependency.
* dependant — The object that is the dependant.

are_dependencies_resolved
Checks whether all dependencies in this DependencyTracker instance are resolved.

Returns True when all dependencies resolved, False if not.

64

Chapter 1. coalib package

coala Documentation, Release 0.11.0

check_circular_dependencies ()
Checks whether there are circular dependency conflicts.

Traceback (most recent call last):

coalib.core.CircularDependencyError.CircularDependencyError:

Raises CircularDependencyError — Raised on circular dependency conflicts.

get_all_dependants (dependency)
Returns a set of all dependants of the given dependency, even indirectly related ones.

Parameters dependency — The dependency to get all dependants for.

Returns A set of dependants.

get_all_dependencies (dependant)
Returns a set of all dependencies of the given dependants, even indirectly related ones.

Parameters dependant — The dependant to get all dependencies for.

Returns A set of dependencies.

get_dependants (dependency)
Returns all immediate dependants for the given dependency.

0, 1

0, 2

1, 3
0
1
2

Parameters dependency — The dependency to retrieve all dependants from.

Returns A set of dependants.

1.1. Subpackages 65

coala Documentation, Release 0.11.0

get_dependencies (dependant)
Returns all immediate dependencies of a given dependant.

0, 1

0, 2

1, 2
0
1
2

Parameters dependant — The dependant to retrieve all dependencies from.
Returns A set of dependencies.
resolve (dependency)

Resolves all dependency-relations from the given dependency, and frees and returns dependants with no
more dependencies. If the given dependency is itself a dependant, all those relations are also removed.

0, 1
0, 2
3

0

2

2

Parameters dependency — The dependency.

Returns Returns a set of dependants whose dependencies were all resolved.

coalib.core.Graphs module

coalib.core.Graphs.traverse_graph (start_nodes, get_successive_nodes,

run_on_edge=<function <lambda>>)
Traverses all edges of a directed, possibly disconnected graph once. Detects cyclic graphs by raising a

CircularDependencyError.

1 2 2 3, 4 5 3 3
get_successive_nodes

o)

set
append_to_edges

1, 5
sorted

You can also use this function to detect cyclic graphs:

66 Chapter 1. coalib package

coala Documentation, Release 0.11.0

Traceback (most recent call last):

coalib.core.CircularDependencyError.CircularDependencyError:

Parameters
* start_nodes — The nodes where to start traversing the graph.

* get_successive_nodes — A callable that takes in a node and returns an iterable of
nodes to traverse next.

* run_on_edge — A callable that is run on each edge during traversing. Takes in two
parameters, the previous- and next-node which form an edge. The default is an empty
function.

Raises CircularDependencyError — Raised when the graph is cyclic.
Module contents
coalib.misc package
Submodules

coalib.misc.BuildManPage module

class coalib.misc.BuildManPage .BuildManPage (dist)
Bases: distutils.cmd.Command

Add a build_manpage command to your setup.py. To use this Command class add a command to call this

class:

from coalib.misc.BuildManPage import

You can then use the following setup command to produce a man page:

$ python setup.py build_manpage —--output=coala.l —-—parser=coalib.
—parsing.DefaultArgParser:default_arg_parser

If automatically want to build the man page every time you invoke your build, add to your setup.cfg the

following:

1.1. Subpackages

67

coala Documentation, Release 0.11.0

finalize_options ()
initialize_options ()
run ()

user_options = [(‘output=’, ‘O’, ‘output file’), (‘parser=", None, ‘module path to an ArgumentParser instance(e.g. my:

class coalib.misc.BuildManPage .ManPageFormatter (prog, indent_increment=2,
max_help_position=24, width=None,
desc=None, long_desc=None,

ext_sections=None, parser=None)
Bases: argparse.HelpFormatter

format_man_page ()

coalib.misc.Caching module

class coalib.misc.Caching.FileCache (log_printer: coalib.output.printers.LogPrinter.LogPrinterMixin,

project_dir: str, flush_cache: bool = False)
Bases: object

This object is a file cache that helps in collecting only the changed and new files since the last run. Exam-
ple/Tutorial:

pyprint .NullPrinter
coalib.output.printers.LogPrinter

logging
copy, time

To initialize the cache create an instance for the project:

| |

Now we can track new files by running:

| |

Since all cache operations are lazy (for performance), we need to explicitly write the cache to disk for persistence
in future uses: (Note: The cache will automatically figure out the write location)

| |

Let’s go into the future:

| 1 |

Let’s create a new instance to simulate a separate run:

| |

68 Chapter 1. coalib package

coala Documentation, Release 0.11.0

We can mark a file as changed by doing:

|

Again write to disk after calculating the new cache times for each file:

Since we marked ‘a.c’ as a changed file:

Since ‘b.c’ was untouched after the second run, its time was updated to the latest value:

flush cache ()
Flushes the cache and deletes the relevant file.

get_uncached files (files)
Returns the set of files that are not in the cache yet or have been untracked.

Parameters f£iles — The list of collected files.
Returns A set of files that are uncached.

track_files (files)
Start tracking files given in £iles by adding them to the database.

Parameters £iles — A set of files that need to be tracked. These files are initialized with their
last modified tag as -1.

untrack_files (files)
Removes the given files from the cache so that they are no longer considered cached for this and the next
run.

Parameters files — A set of files to remove from cache.

write ()
Update the last run time on the project for each file to the current time. Using this object as a contextman-
ager is preferred (that will automatically call this method on exit).

coalib.misc.CachingUtilities module
coalib.misc.CachingUtilities.delete_f£files (log_printer, identifiers)
Delete the given identifiers from the user’s coala data directory.
Parameters
* log_printer — A LogPrinter object to use for logging.

e identifiers — The list of files to be deleted.

1.1. Subpackages 69

coala Documentation, Release 0.11.0

Returns True if all the given files were successfully deleted. False otherwise.

coalib.misc.CachingUtilities.get_data_path (log_printer, identifier)
Get the full path of identifier present in the user’s data directory.

Parameters
* log_printer — A LogPrinter object to use for logging.
* identifier — The file whose path needs to be expanded.

Returns Full path of the file, assuming it’s present in the user’s config directory. Returns None if
there is a PermissionError in creating the directory.

coalib.misc.CachingUtilities.get_settings_hash (sections, targets=[], ignore_settings:
list = [’disable_caching’])
Compute and return a unique hash for the settings.

Parameters

* sections — A dict containing the settings for each section.

* targets — The list of sections that are enabled.

* ignore_settings — Setting keys to remove from sections before hashing.
Returns A MDS5 hash that is unique to the settings used.

coalib.misc.CachingUtilities.hash_id (text)
Hashes the given text.

Parameters text — String to to be hashed
Returns A MDS5 hash of the given string

coalib.misc.CachingUtilities.pickle_dump (log_printer, identifier, data)
Write data into the file £i1lename present in the user config directory.

Parameters
* log_printer — A LogPrinter object to use for logging.
* identifier — The name of the file present in the user config directory.
* data - Data to be serialized and written to the file using pickle.
Returns True if the write was successful. False if there was a permission error in writing.

coalib.misc.CachingUtilities.pickle_load (log_printer, identifier, fallback=None)
Get the data stored in £ilename present in the user config directory. Example usage:

pyprint.NullPrinter
coalib.output.printers.LogPrinter

42

42

Parameters

* log_printer — A LogPrinter object to use for logging.

70 Chapter 1. coalib package

coala Documentation, Release 0.11.0

* identifier — The name of the file present in the user config directory.
* fallback — Return value to fallback to in case the file doesn’t exist.

Returns Data that is present in the file, if the file exists. Otherwise the default value is returned.

coalib.misc.CachingUtilities.settings_changed (log_printer, settings_hash)
Determine if the settings have changed since the last run with caching.

Parameters
* log _printer — A LogPrinter object to use for logging.
* settings_hash — A MDS5 hash that is unique to the settings used.

Returns Return True if the settings hash has changed Return False otherwise.

coalib.misc.CachingUtilities.update_settings_db (log_printer, settings_hash)
Update the config file last modification date.

Parameters
* log_printer — A LogPrinter object to use for logging.

* settings_hash — A MDS5 hash that is unique to the settings used.
coalib.misc.Compatibility module
coalib.misc.Constants module
coalib.misc.DictUtilities module
coalib.misc.DictUtilities.inverse_dicts (*dicts)
Inverts the dicts, e.g. {1: 2, 3: 4} and {2: 3, 4: 4} will be inverted {2: [1], 3: [2], 4: [3, 4]}. This also handles

dictionaries with Iterable items as values e.g. {1: [1, 2, 3], 2: [3, 4, 5]} and {2: [1], 3: [2], 4: [3, 4]} will be
inverted to {1: [1, 2], 2: [1, 3], 3: [1, 2, 4], 4: [2, 4], 5: [2]}. No order is preserved.

Parameters dicts (dict)— The dictionaries to invert.

Returns The inversed dictionary which merges all dictionaries into one.

Return type defaultdict
coalib.misc.DictUtilities.update_ordered_dict_key (dictionary, old_key, new_key)

coalib.misc.Enum module

coalib.misc.Enum.enum (*sequential, **named)

coalib.misc.Exceptions module

coalib.misc.Exceptions.get_exitcode (exception, log_printer=None)

1.1. Subpackages 4

coala Documentation, Release 0.11.0

coalib.misc.Shell module

class coalib.misc.Shell.ShellCommandResult (code, stdout, stderr)

Bases: tuple
The result of a coalib.misc.run_shell command () call.

It is based on a (stdout, stderr) string tuple like it is returned
form subprocess.Popen.communicate and was originally returned from
coalib.misc.run_shell command (). So itis backwards-compatible.

It additionally stores the return . code:

input

coalib.misc.Shell.get_shell_type ()

Finds the current shell type based on the outputs of common pre-defined variables in them. This is useful to
identify which sort of escaping is required for strings.

Returns The shell type. This can be either “powershell” if Windows Powershell is detected, “cmd”
if command prompt is been detected or “sh” if it’s neither of these.

coalib.misc.Shell.run_interactive_shell_command (command, **kwargs)

Runs a single command in shell and provides stdout, stderr and stdin streams.

This function creates a context manager that sets up the process (using subprocess.Popen ()), returns to
caller and waits for process to exit on leaving.

By default the process is opened in universal_newlines mode and creates pipes for all streams (stdout,
stderr and stdin) using subprocess . PIPE special value. These pipes are closed automatically, so if you want
to get the contents of the streams you should retrieve them before the context manager exits.

Custom streams provided are not closed except of subprocess.PIPE.

tempfile

72

Chapter 1. coalib package

coala Documentation, Release 0.11.0

as

Parameters

* command — The command to run on shell. This parameter can either be a sequence
of arguments that are directly passed to the process or a string. A string gets split-
ted beforehand using shlex.split (). If providing shell=True as a keyword-
argument, no shlex.split () is performed and the command string goes directly to
subprocess.Popen().

* kwargs — Additional keyword arguments to pass to subprocess.Popen that are used
to spawn the process.

Returns A context manager yielding the process started from the command.
coalib.misc.Shell.run_shell_ command (command, stdin=None, **kwargs)
Runs a single command in shell and returns the read stdout and stderr data.

This function waits for the process (created using subprocess.Popen ()) to exit. Effectively it wraps
run_interactive_shell_ command () and uses communicate () on the process.

See also run_interactive_shell_command ().
Parameters

* command — The command to run on shell. This parameter can either be a sequence of
arguments that are directly passed to the process or a string. A string gets splitted beforehand
using shlex.split ().

* stdin - Initial input to send to the process.

* kwargs — Additional keyword arguments to pass to subprocess .Popen that is used to
spawn the process.

Returns A tuple with (stdoutstring, stderrstring).

Module contents
coalib.output package

Subpackages

coalib.output.printers package
Submodules

coalib.output.printers.LOG_LEVEL module

1.1. Subpackages 73

coala Documentation, Release 0.11.0

coalib.output.printers.ListLogPrinter module

class coalib.output.printers.ListLogPrinter.ListLogPrinter (log_level=30, times-

tamp_format="%X")
Bases: pyprint.Printer.Printer, coalib.output.printers.LogPrinter.LogPrinterMixin

A ListLogPrinter is a log printer which collects all LogMessages to a list so that the logs can be used at a later
time.

log_message (log_message, **kwargs)

coalib.output.printers.LogPrinter module

class coalib.output.printers.LogPrinter.LogPrinter (printer=None, log_level=10, times-

tamp_format="%X")
Bases: coalib.output.printers.LogPrinter.LogPrinterMixin

This class is deprecated and will be soon removed. To get logger use logging.getLogger(__name__). Make sure
that you’re getting it when the logging configuration is loaded.

The LogPrinter class allows to print log messages to an underlying Printer.
This class is an adapter, means you can create a LogPrinter from every existing Printer instance.

log_level
Returns current log_level used in logger.

log_message (log_message, **kwargs)

printer
Returns the underlying printer where logs are printed to.

class coalib.output.printers.LogPrinter.LogPrinterMixin

Bases: object

Provides access to the logging interfaces (e.g. err, warn, info) by routing them to the log_message method,
which should be implemented by descendants of this class.

debug (*messages, *, delimiter="", timestamp=None, **kwargs)
err (*messages, *, delimiter=" ", timestamp=None, **kwargs)
info (*messages, *, delimiter=""*, timestamp=None, **kwargs)

log (log_level, message, timestamp=None, **kwargs)

log_exception (message, exception, log_level=40, timestamp=None, **kwargs)
If the log_level of the printer is greater than DEBUG, it prints only the message. If it is DEBUG or lower,
it shows the message along with the traceback of the exception.

Parameters
* message — The message to print.
* exception — The exception to print.

* log_level — The log_level of this message (not used when logging the traceback.
Tracebacks always have a level of DEBUG).

* timestamp — The time at which this log occurred. Defaults to the current time.

* kwargs — Keyword arguments to be passed when logging the message (not used when
logging the traceback).

74

Chapter 1. coalib package

coala Documentation, Release 0.11.0

log_message (log_message, **kwargs)
It is your reponsibility to implement this method, if you’re using this mixin.

warn (*messages, *, delimiter=""*, timestamp=None, **kwargs)

Module contents

This package holds printer objects. Printer objects are general purpose and not tied to coala.

If you need logging capabilities please take a look at the LogPrinter object which adds logging capabilities “for free”
if used as base class for any other printer.

Submodules
coalib.output.ConfWriter module

class coalib.output.ConfWriter.ConfWriter (file_name, key_value_delimiters=(‘=",), com-
ment_separators=(‘#’,), key_delimiters=(", *, * ‘),
section_name_surroundings=mappingproxy({ ‘[’:
T}, section_override_delimiters=("*.,
), unsavable_keys=(‘save’,),

key_value_append_delimiters=(‘+=",))
Bases: pyprint.ClosableObject.ClosableObject

static is_comment (key)
write_ section (section)

write_sections (sections)

coalib.output.Consolelnteraction module

class coalib.output.ConsoleInteraction.BackgroundMessageStyle
Bases: pygments.style.Style

styles = {Token.Generic.Output: ¢’, Token.Name.Entity: ¢’, Token.Name: ¢’, Token.Literal.String.Heredoc: ¢’, Token.L

class coalib.output.ConsoleInteraction.BackgroundSourceRangeStyle
Bases: pygments.style.Style

styles = {Token.Generic.Output: ¢’, Token.Name.Entity: ¢’, Token.Name: ¢’, Token.Literal.String.Heredoc: ¢’, Token.L

class coalib.output.ConsoleInteraction.NoColorStyle
Bases: pygments.style.Style

styles = {Token.Generic.Output: ¢’, Token.Name.Entity: ¢’, Token.Name: ¢’, Token.Literal.String.Heredoc: ¢’, Token.L

coalib.output.ConsoleInteraction.acquire_actions_and_apply (console_printer, sec-
tion, file_diff dict,
result, file_dict,
cli_actions=None)
Acquires applicable actions and applies them.

Parameters
* console_printer — Object to print messages on the console.

* section — Name of section to which the result belongs.

1.1. Subpackages 75

coala Documentation, Release 0.11.0

 file diff_dict - Dictionary containing filenames as keys and Diff objects as values.
* result — A derivative of Result.

* file dict - A dictionary containing all files with filename as key.

e cli_actions — The list of cli actions available.

coalib.output.ConsoleInteraction.acquire_settings (log_printer, settings_names_dict,

])) section)
This method prompts the user for the given settings.

Parameters

* log_printer — Printer responsible for logging the messages. This is needed to comply
with the interface.

* settings_names_dict — A dictionary with the settings name as key and a list contain-
ing a description in [0] and the name of the bears who need this setting in [1] and following.

Example:

Parameters section — The section the action corresponds to.
Returns A dictionary with the settings name as key and the given value as value.
coalib.output.ConsoleInteraction.ask_for_action_and_apply (console_printer,
section, meta-
data_list, action_dict,
failed_actions, result,

file_diff dict, file_dict)
Asks the user for an action and applies it.

Parameters
* console_printer — Object to print messages on the console.
* section — Currently active section.
* metadata_1list — Contains metadata for all the actions.
* action_dict - Contains the action names as keys and their references as values.

e failed actions — A set of all actions that have failed. A failed action remains in the
list until it is successfully executed.

* result — Result corresponding to the actions.

» file diff_ dict - If it is an action which applies a patch, this contains the diff of the
patch to be applied to the file with filename as keys.

* file_ dict - Dictionary with filename as keys and its contents as values.

Returns Returns a boolean value. True will be returned, if it makes sense that the user may choose
to execute another action, False otherwise.

coalib.output.ConsoleInteraction.choose_action (console_printer, actions)
Presents the actions available to the user and takes as input the action the user wants to choose.

Parameters

76 Chapter 1. coalib package

coala Documentation, Release 0.11.0

* console_printer — Object to print messages on the console.
* actions — Actions available to the user.
Returns Return choice of action of user.
coalib.output.ConsolelInteraction.format_lines (lines, line_nr="")

coalib.output.ConsoleInteraction.get_action_info (section, action, failed_actions)
Gets all the required Settings for an action. It updates the section with the Settings.

Parameters
* section - The section the action corresponds to.
* action - The action to get the info for.

e failed_actions — A set of all actions that have failed. A failed action remains in the
list until it is successfully executed.

Returns Action name and the updated section.

coalib.output.ConsoleInteraction.highlight_text (no_color, text,
lexer=<pygments.lexers.TextLexer>,
style=None)

coalib.output.ConsoleInteraction.nothing_done (log_printer)

Will be called after processing a coafile when nothing had to be done, i.e. no section was enabled/targeted.

Parameters log_printer — A LogPrinter object.

coalib.output.ConsolelInteraction.print_actions (console_printer, section, actions,
failed_actions)
Prints the given actions and lets the user choose.

Parameters
* console_printer — Object to print messages on the console.
* actions — A list of FunctionMetadata objects.

e failed_actions — A set of all actions that have failed. A failed action remains in the
list until it is successfully executed.

Returns A tuple with the name member of the FunctionMetadata object chosen by the user and a
Section containing at least all needed values for the action. If the user did choose to do nothing,
return (None, None).

coalib.output.ConsoleInteraction.print_affected_f£files (console_printer, log_printer,

result, file_dict)
Prints all the affected files and affected lines within them.

Parameters
* console_printer — Object to print messages on the console.
* log_printer — Printer responsible for logging the messages.
* result — The result to print the context for.
* file dict — A dictionary containing all files with filename as key.

coalib.output.ConsoleInteraction.print_affected_lines (console_printer, file_dict,
sourcerange)
Prints the lines affected by the bears.

Parameters

1.1. Subpackages

77

coala Documentation, Release 0.11.0

* console_printer — Object to print messages on the console.
* file_dict — A dictionary containing all files with filename as key.
* sourcerange — The SourceRange object referring to the related lines to print.

coalib.output.ConsoleInteraction.print_bears (bears, show_description, show_params,

console_printer)
Presents all bears being used in a stylized manner.

Parameters

* bears — It’s a dictionary with bears as keys and list of sections containing those bears as
values.

* show_description - True if the main description of the bears should be shown.
* show_params — True if the parameters and their description should be shown.
* console_printer — Object to print messages on the console.

coalib.output.ConsoleInteraction.print_diffs_info (diffs, printer)
Prints diffs information (number of additions and deletions) to the console.

Parameters
* diffs — List of Diff objects containing corresponding diff info.
* printer — Object responsible for printing diffs on console.

coalib.output.ConsolelInteraction.print_1lines (console_printer, file_dict, sourcerange)
Prints the lines between the current and the result line. If needed they will be shortened.

Parameters
* console_printer — Object to print messages on the console.
* file dict - A dictionary containing all files as values with filenames as key.
* sourcerange — The SourceRange object referring to the related lines to print.

coalib.output.ConsoleInteraction.print_result (console_printer, section, file_diff dict, re-

sult, file_dict, interactive=True)
Prints the result to console.

Parameters
* console_printer — Object to print messages on the console.
* section — Name of section to which the result belongs.
» file diff dict - Dictionary containing filenames as keys and Diff objects as values.
* result — A derivative of Result.
* file_ dict - A dictionary containing all files with filename as key.
* interactive — Variable to check whether or not to offer the user actions interactively.

coalib.output.ConsolelInteraction.print_results (log_printer, section, result_list, file_dict,

file_diff dict, console_printer)
Prints all the results in a section.

Parameters
* log_printer — Printer responsible for logging the messages.

* section - The section to which the results belong to.

78 Chapter 1. coalib package

coala Documentation, Release 0.11.0

* result_list — List containing the results
* file_dict — A dictionary containing all files with filename as key.

» file diff dict - A dictionary that contains filenames as keys and diff objects as val-
ues.

* console_printer — Object to print messages on the console.

coalib.output.ConsoleInteraction.print_results_formatted (log_printer, section, re-
sult_list, file_dict, *args)
Prints results through the format string from the format setting done by user.

Parameters
* log_printer — Printer responsible for logging the messages.
* section - The section to which the results belong.

* result_list — List of Result objects containing the corresponding results.

coalib.output.ConsoleInteraction.print_results_no_input (log_printer, section,
result_list, file_dict,
file_diff dict, con-
sole_printer)

Prints all non interactive results in a section
Parameters
* log_printer — Printer responsible for logging the messages.
* section - The section to which the results belong to.
* result_list — List containing the results
* file_dict — A dictionary containing all files with filename as key.

» file diff dict - A dictionary that contains filenames as keys and diff objects as val-
ues.

* console_printer — Object to print messages on the console.

coalib.output.ConsoleInteraction.print_section_beginning (console_printer, section)
Will be called after initialization current_section in begin_section()

Parameters
* console_printer — Object to print messages on the console.
* section - The section that will get executed now.

coalib.output.ConsolelInteraction.require_setting (setting_name, arr, section)
This method is responsible for prompting a user about a missing setting and taking its value as input from the
user.

Parameters
* setting_ name — Name of the setting missing

* arr — A list containing a description in [0] and the name of the bears who need this setting
in [1] and following.

* section - The section the action corresponds to.

coalib.output.ConsoleInteraction.show_bear (bear, show_description, show_params, con-

sole_printer)
Displays all information about a bear.

1.1. Subpackages 79

coala Documentation, Release 0.11.0

Parameters
* bear — The bear to be displayed.
* show_description — True if the main description should be shown.
* show_params — True if the details should be shown.

* console_printer — Object to print messages on the console.

coalib.output.ConsoleInteraction.show bears (local_bears, global_bears,
show_description, show_params, con-
sole_printer)

Extracts all the bears from each enabled section or the sections in the targets and passes a dictionary to the
show_bears_callback method.

Parameters

* local_bears — Dictionary of local bears with section names as keys and bear list as
values.

* global_bears — Dictionary of global bears with section names as keys and bear list as
values.

* show_description — True if the main description of the bears should be shown.
* show_params — True if the parameters and their description should be shown.
* console_printer — Object to print messages on the console.

coalib.output.ConsoleInteraction.show_enumeration (console_printer, title, items, inden-

tation, no_items_text)
This function takes as input an iterable object (preferably a list or a dict) and prints it in a stylized format. If the

iterable object is empty, it prints a specific statement given by the user. Ane.g :
<indentation>Title: <indentation> * Item 1 <indentation> * Item 2
Parameters
* console_printer — Object to print messages on the console.
* title - Title of the text to be printed
* items - The iterable object.
* indentation — Number of spaces to indent every line by.
* no_items_text — Text printed when iterable object is empty.

coalib.output.ConsoleInteraction.show_language_bears_capabilities (language_bears_capabilities,
con-

sole_printer)
Displays what the bears can detect and fix.

Parameters

* language_bears_capabilities — Dictionary with languages as keys and their
bears’ capabilities as values. The capabilities are stored in a tuple of two elements where
the first one represents what the bears can detect, and the second one what they can fix.

* console_printer — Object to print messages on the console.

80 Chapter 1. coalib package

coala Documentation, Release 0.11.0

coalib.output.Interactions module

coalib.output.Interactions.fail_acquire_settings (log_printer, settings_names_dict,

section)
This method throws an exception if any setting needs to be acquired.

Parameters
* log_printer — Printer responsible for logging the messages.

* settings — A dictionary with the settings name as key and a list containing a description
in [0] and the name of the bears who need this setting in [1] and following.

Raises
* AssertionError — If any setting is required.

* TypeError — If settings_names_dict is not a dictionary.

coalib.output.JSONEncoder module

coalib.output.JSONEncoder.create_json_encoder (**kwargs)

coalib.output.Logging module

class coalib.output.Logging.CounterHandler (level=0)
Bases: logging.Handler
A logging handler which counts the number of calls for each logging level.
classmethod emit (record)

classmethod get_num_calls_for_level (level)
Returns the number of calls registered for a given log level.

classmethod reset ()
Reset the counter to O for all levels

class coalib.output.Logging.JSONFormatter (fint=None, datefmt=None, style="%’)
Bases: logging.Formatter

JSON formatter for python logging.
static format (record)

coalib.output.Logging.configure_json_logging ()
Configures logging for JSON. :return: Returns a St ringIO that captures the logs as JSON.

coalib.output.Logging.configure logging ()
Configures the logging with hard coded dictionary.

Module contents
coalib.parsing package

Submodules

1.1. Subpackages 81

coala Documentation, Release 0.11.0

coalib.parsing.CliParsing module
coalib.parsing.CliParsing.check_conflicts (sections)
Checks if there are any conflicting arguments passed.

Parameters sections — The {section_name: section_object} dictionary to check
conflicts for.

Returns True if no conflicts occur.
Raises SystemExit — If there are conflicting arguments (exit code: 2)

coalib.parsing.CliParsing.parse_cli (arg_list=None, origin="/home/docs/checkouts/readthedocs.org/user_builds/coala

api/checkouts/stable/docs’, arg_parser=None,
key_value_delimiters=(‘=",), com-
ment_seperators=(), key_delimiters=(",
‘), section_override_delimiters=("‘.,),

key_value_append_delimiters=(‘+=",))
Parses the CLI arguments and creates sections out of it.

Parameters
* arg_list — The CLI argument list.
* origin — Directory used to interpret relative paths given as argument.
* arg_parser — Instance of ArgParser that is used to parse none-setting arguments.

* key_value_delimiters — Delimiters to separate key and value in setting arguments
where settings are being defined.

* comment_seperators — Allowed prefixes for comments.
* key_delimiters — Delimiter to separate multiple keys of a setting argument.

* section_override delimiters — The delimiter to delimit the section from the key
name (e.g. the ‘. in sect.key = value).

* key_value_append_delimiters — Delimiters to separate key and value in setting
arguments where settings are being appended.

Returns A dictionary holding section names as keys and the sections themselves as value.

coalib.parsing.CliParsing.parse_custom_settings (sections, custom_settings_list, origin,

line_parser)
Parses the custom settings given to coala via —S something=value.

Parameters
* sections — The Section dictionary to add to (mutable).
* custom_settings_list — The list of settings strings.
* origin — The originating directory.

* line_parser — The LineParser to use.

82 Chapter 1. coalib package

coala Documentation, Release 0.11.0

coalib.parsing.ConfParser module

class coalib.parsing.ConfParser.ConfParser (key_value_delimiters=(‘=’,), com-
ment_seperators=(‘#’,), key_delimiters=(", *, * *),
section_name_surroundings=mappingproxy({ ‘[’:
T}, remove_empty_iter_elements=True,

key_value_append_delimiters=(‘+=",))
Bases: object

get_section (name, create_if not_exists=False)

parse (input_data, overwrite=False)
Parses the input and adds the new data to the existing.

Parameters
e input_data — The filename to parse from.

* overwrite — If True, wipes all existing Settings inside this instance and adds only the
newly parsed ones. If False, adds the newly parsed data to the existing one (and overwrites
already existing keys with the newly parsed values).

Returns A dictionary with (lowercase) section names as keys and their Setting objects as values.

coalib.parsing.DefaultArgParser module

class coalib.parsing.DefaultArgParser.CustomFormatter (prog, indent_increment=2,
max_help_position=24,
width=None)

Bases: argparse.RawDescriptionHelpFormatter

A Custom Formatter that will keep the metavars in the usage but remove them in the more detailed arguments
section.

coalib.parsing.DefaultArgParser.default_arg_parser (formatter_class=None)
This function creates an ArgParser to parse command line arguments.

Parameters formatter_ class — Formatting the arg_parser output into a specific form. For
example: In the manpage format.

coalib.parsing.Globbing module
coalib.parsing.Globbing. fnmatch (name, globs)
Tests whether name matches one of the given globs.
Parameters
* name — File or directory name
* globs — Glob string with wildcards or list of globs
Returns Boolean: Whether or not name is matched by glob
Glob Syntax:

*‘[seq]’: Matches any character in seq. Cannot be empty. Any special character looses its special
meaning in a set.

*‘[!seq]’: Matches any character not in seq. Cannot be empty. Any special character looses its special
meaning in a set.

1.1. Subpackages 83

coala Documentation, Release 0.11.0

*‘(seq_alseq_b)’: Matches either sequence_a or sequence_b as a whole. More than two or just one se-
quence can be given.

**?’: Matches any single character.
“’: Matches everything but os.sep.
«“**°: Matches everything.

coalib.parsing.Globbing.glob (pattern)
Iterates all filesystem paths that get matched by the glob pattern. Syntax is equal to that of fnmatch.

Parameters pattern — Glob pattern with wildcards
Returns List of all file names that match pattern

coalib.parsing.Globbing.glob_escape (input_string)
Escapes the given string with [c] pattern. Examples:

coalib.parsing.Globbing

Parameters input_string - String that is to be escaped with [].
Returns Escaped string in which all the special glob characters () [] | 2 are escaped.
coalib.parsing.Globbing.has_wildcard (pattern)
Checks whether pattern has any wildcards.
Parameters pattern — Glob pattern that may contain wildcards
Returns Boolean: Whether or not there are wildcards in pattern

coalib.parsing.Globbing.iglob (pattern)
Iterates all filesystem paths that get matched by the glob pattern. Syntax is equal to that of fnmatch.

Parameters pattern — Glob pattern with wildcards
Returns Iterator that yields all file names that match pattern

coalib.parsing.Globbing.relative_flat_glob (dirname, basename)
Non-recursive glob for one directory. Does not accept wildcards.

Parameters

* dirname — Directory name

* basename — Basename of a file in dir of dirname
Returns List containing Basename if the file exists

coalib.parsing.Globbing.relative_recursive_glob (dirname, pattern)
Recursive Glob for one directory and all its (nested) subdirectories. Accepts only “**’ as pattern.

Parameters
* dirname - Directory name
* pattern — The recursive wildcard “**’

Returns Iterator that yields all the (nested) subdirectories of the given dir

84 Chapter 1. coalib package

coala Documentation, Release 0.11.0

coalib.parsing.Globbing.relative_wildcard_glob (dirname, pattern)
Non-recursive glob for one directory. Accepts wildcards.

Parameters
* dirname - Directory name
* pattern — Glob pattern with wildcards
Returns List of files in the dir of dirname that match the pattern

coalib.parsing.Globbing.translate (paitern)
Translates a pattern into a regular expression.

Parameters pattern — Glob pattern with wildcards

Returns Regular expression with the same meaning

coalib.parsing.LineParser module

class coalib.parsing.LineParser.LineParser (key_value_delimiters=(‘=",), com-
ment_separators=(‘#’,), key_delimiters=(",
S ¢ 9), section_name_surroundings=None,
section_override_delimiters=("‘.,),

key_value_append_delimiters=(‘+=",))
Bases: object

parse (line)
Note that every value in the returned tuple besides the value is unescaped. This is so since the value is
meant to be put into a Setting later thus the escapes may be needed there.

Parameters line — The line to parse.

Returns section_name (empty string if it’s no section name), [(section_override, key), ...], value,
comment

Module contents

The StringProcessing module contains various functions for extracting information out of strings.

Most of them support regexes for advanced pattern matching.

coalib.processes package
Subpackages

coalib.processes.communication package
Submodules

coalib.processes.communication.LogMessage module

class coalib.processes.communication.LogMessage .LogMessage (log_level, *messages,
* delimiter="°, times-
tamp=None)

Bases: object

1.1. Subpackages 85

coala Documentation, Release 0.11.0

to_string_dict ()
Makes a dictionary which has all keys and values as strings and contains all the data that the LogMessage
has.

Returns Dictionary with keys and values as string.

Module contents

Submodules
coalib.processes.BearRunning module

coalib.processes.BearRunning.get_global_dependency_results (global_result_dict,

) S)) bear_instance)
This method gets all the results originating from the dependencies of a bear_instance. Each bear_instance may

or may not have dependencies.

Parameters global result_dict — The list of results out of which the dependency results are
picked.

Returns None if bear has no dependencies, False if dependencies are not met, the dependency dict
otherwise.

coalib.processes.BearRunning.get_local_dependency_results (local_result_list,

) S) ~ bear_instance)
This method gets all the results originating from the dependencies of a bear_instance. Each bear_instance may

or may not have dependencies.
Parameters

* local_result_list — The list of results out of which the dependency results are
picked.

* bear_instance - The instance of a local bear to get the dependencies from.

Returns Return none if there are no dependencies for the bear. Else return a dictionary containing
dependency results.

coalib.processes.BearRunning.get_next_global_bear (timeout, global_bear_queue,
global_bear_list,

global_result_dict)
Retrieves the next global bear.

Parameters

* timeout — The queue blocks at most timeout seconds for a free slot to execute the put
operation on. After the timeout it returns queue Full exception.

* global_bear_queue - queue (read, write) of indexes of global bear instances in the
global_bear_list.

* global_bear_1list — A list containing all global bears to be executed.

* global_result_dict — A Manager.dict that will be used to store global results. The
list of results of one global bear will be stored with the bear name as key.

Returns (bear, bearname, dependency_results)

86 Chapter 1. coalib package

coala Documentation, Release 0.11.0

coalib.processes.BearRunning.run (file_name_queue, local_bear_list, global_bear_list,
global_bear_queue, file_dict, local_result_dict,
global_result_dict, message_queue, control_queue, time-
out=0)

This is the method that is actually runs by processes.

If parameters type is ‘queue (read)’ this means it has to implement the get(timeout=TIMEOUT) method and it
shall raise queue.Empty if the queue is empty up until the end of the timeout. If the queue has the (optional!)
task_done() attribute, the run method will call it after processing each item.

If parameters type is ‘queue (write)’ it shall implement the put(object, timeout=TIMEOUT) method.

If the queues raise any exception not specified here the user will get an ‘unknown error’ message. So beware of
that.

Parameters

* file name_queue — queue (read) of file names to check with local bears. Each invoca-
tion of the run method needs one such queue which it checks with all the local bears. The
queue could be empty. (Repeat until queue empty.)

e local_bear_list — List of local bear instances.
* global_bear_1list — List of global bear instances.

* global_bear_queue — queue (read, write) of indexes of global bear instances in the
global_bear_list.

 file_dict —dict of all files as {filename:file}, file as in file.readlines().

* local_result_dict — A Manager.dict that will be used to store local results. A list of
all local results. will be stored with the filename as key.

* global_result_dict — A Manager.dict that will be used to store global results. The
list of results of one global bear will be stored with the bear name as key.

* message_queue — queue (write) for debug/warning/error messages (type LogMessage)

* control_queue — queue (write). If any result gets written to the result_dict a tu-
ple containing a CONTROL_ELEMENT (to indicate what kind of event happened) and
either a bear name (for global results) or a file name to indicate the result will be
put to the queue. If the run method finished all its local bears it will put (CON-
TROL_ELEMENT.LOCAL_FINISHED, None) to the queue, if it finished all global ones,
(CONTROL_ELEMENT.GLOBAL_FINISHED, None) will be put there.

* timeout — The queue blocks at most timeout seconds for a free slot to execute the put
operation on. After the timeout it returns queue Full exception.

coalib.processes.BearRunning.run_bear (message_queue, timeout, bear_instance, *args,

**kwargs)
This method is responsible for executing the instance of a bear. It also reports or logs errors if any occur during
the execution of that bear instance.

Parameters

* message_queue — A queue that contains messages of type errors/warnings/debug state-
ments to be printed in the Log.

* timeout - The queue blocks at most timeout seconds for a free slot to execute the put
operation on. After the timeout it returns queue Full exception.

* bear_instance - The instance of the bear to be executed.

* args — The arguments that are to be passed to the bear.

1.1.

Subpackages 87

coala Documentation, Release 0.11.0

* kwargs — The keyword arguments that are to be passed to the bear.

Returns Returns a valid list of objects of the type Result if the bear executed successfully. None
otherwise.

coalib.processes.BearRunning.run_global_bear (message_queue, timeout,
global_bear_instance, depen-

dency_results)
Runs an instance of a global bear. Checks if bear_instance is of type GlobalBear and then passes it to the

run_bear to execute.
Parameters

* message_queue — A queue that contains messages of type errors/warnings/debug state-
ments to be printed in the Log.

* timeout - The queue blocks at most timeout seconds for a free slot to execute the put
operation on. After the timeout it returns queue Full exception.

* global_bear_instance — Instance of GlobalBear to run.

* dependency_results — The results of all the bears on which the instance of the passed
bear to be run depends on.

Returns Returns a list of results generated by the passed bear_instance.

coalib.processes.BearRunning.run_global_bears (message_queue, timeout,
global_bear_queue, global_bear_list,
global_result_dict, control_queue)
Run all global bears.
Parameters

* message_dqueue — A queue that contains messages of type errors/warnings/debug state-
ments to be printed in the Log.

* timeout — The queue blocks at most timeout seconds for a free slot to execute the put
operation on. After the timeout it returns queue Full exception.

* global_bear_queue - queue (read, write) of indexes of global bear instances in the
global_bear_list.

* global_bear_1list — list of global bear instances

* global_result_dict — A Manager.dict that will be used to store global results. The
list of results of one global bear will be stored with the bear name as key.

* control_queue - If any result gets written to the result_dict a tuple containing a CON-
TROL_ELEMENT (to indicate what kind of event happened) and either a bear name(for
global results) or a file name to indicate the result will be put to the queue.

coalib.processes.BearRunning.run_local_bear (message_queue, timeout, local_result_list,

file_dict, bear_instance, filename)
Runs an instance of a local bear. Checks if bear_instance is of type LocalBear and then passes it to the run_bear

to execute.
Parameters

* message_queue — A queue that contains messages of type errors/warnings/debug state-
ments to be printed in the Log.

* timeout - The queue blocks at most timeout seconds for a free slot to execute the put
operation on. After the timeout it returns queue Full exception.

e local_result_list —Its alist that stores the results of all local bears.

88 Chapter 1. coalib package

coala Documentation, Release 0.11.0

* file_ dict — Dictionary containing contents of file.
* bear_instance - Instance of LocalBear the run.
* filename — Name of the file to run it on.
Returns Returns a list of results generated by the passed bear_instance.

coalib.processes.BearRunning.run_local_bears (filename_queue, message_queue, timeout,
file_dict, local_bear_list, local_result_dict,

control_queue)
Run local bears on all the files given.

Parameters
* filename_queue — queue (read) of file names to check with local bears.

* message_queue — A queue that contains messages of type errors/warnings/debug state-
ments to be printed in the Log.

* timeout — The queue blocks at most timeout seconds for a free slot to execute the put
operation on. After the timeout it returns queue Full exception.

* file_dict — Dictionary that contains contents of files.
* local bear 1list — List of local bears to run.

* local_result_dict — A Manager.dict that will be used to store local bear results. A
list of all local bear results will be stored with the filename as key.

* control_queue - If any result gets written to the result_dict a tuple containing a CON-
TROL_ELEMENT (to indicate what kind of event happened) and either a bear name(for
global results) or a file name to indicate the result will be put to the queue.

coalib.processes.BearRunning.run_local_bears_on_file (message_queue, timeout,
file_dict, local_bear_list, lo-
cal_result_dict, control_queue,

filename)
This method runs a list of local bears on one file.

Parameters

* message_queue — A queue that contains messages of type errors/warnings/debug state-
ments to be printed in the Log.

* timeout - The queue blocks at most timeout seconds for a free slot to execute the put
operation on. After the timeout it returns queue Full exception.

* file dict - Dictionary that contains contents of files.
* local_bear list — List of local bears to run on file.

* local_result_dict — A Manager.dict that will be used to store local bear results. A
list of all local bear results will be stored with the filename as key.

* control_queue - If any result gets written to the result_dict a tuple containing a CON-
TROL_ELEMENT (to indicate what kind of event happened) and either a bear name(for
global results) or a file name to indicate the result will be put to the queue.

e filename — The name of file on which to run the bears.

coalib.processes.BearRunning.send_msg (message_queue, timeout, log_level, *args, *, delim-
)) iter="", end="")
Puts message into message queue for a LogPrinter to present to the user.

Parameters

1.1. Subpackages 89

coala Documentation, Release 0.11.0

* message_queue — The queue to put the message into and which the LogPrinter reads.

* timeout - The queue blocks at most timeout seconds for a free slot to execute the put
operation on. After the timeout it returns queue Full exception.

* log_level — The log_level i.e Error,Debug or Warning.It is sent to the LogPrinter de-
pending on the message.

* args — This includes the elements of the message.
* delimiter - It is the value placed between each arg. By defaultitisa ‘ ‘.
* end - It is the value placed at the end of the message.

coalib.processes.BearRunning.task_done (0bj)
Invokes task_done if the given queue provides this operation. Otherwise passes silently.

Parameters obj — Any object.

coalib.processes.BearRunning.validate_results (message_queue, timeout, result_list,

name, args, kwargs)
Validates if the result_list passed to it contains valid set of results. That is the result_list must itself be a

list and contain objects of the instance of Result object. If any irregularity is found a message is put in the
message_queue to present the irregularity to the user. Each result_list belongs to an execution of a bear.

Parameters

* message_dqueue — A queue that contains messages of type errors/warnings/debug state-
ments to be printed in the Log.

* timeout - The queue blocks at most timeout seconds for a free slot to execute the put
operation on. After the timeout it returns queue Full exception.

e result_1list — The list of results to validate.

* name — The name of the bear executed.

* args — The args with which the bear was executed.

* kwargs — The kwargs with which the bear was executed.

Returns Returns None if the result_list is invalid. Else it returns the result_list itself.

coalib.processes.CONTROL_ELEMENT module
coalib.processes.LogPrinterThread module

class coalib.processes.LogPrinterThread.LogPrinterThread (message_queue,

log_printer)
Bases: threading.Thread

This is the Thread object that outputs all log messages it gets from its message_queue. Setting obj.running =
False will stop within the next 0.1 seconds.

run ()

coalib.processes.Processing module

coalib.processes.Processing.autoapply_actions (results, file_dict, file_diff dict, section,

log_printer)
Auto-applies actions like defined in the given section.

Parameters

920 Chapter 1. coalib package

coala Documentation, Release 0.11.0

* results — A list of results.
* file dict - A dictionary containing the name of files and its contents.

» file diff dict - A dictionary that contains filenames as keys and diff objects as val-
ues.

* section — The section.
* log_printer — A log printer instance to log messages on.

Returns A list of unprocessed results.

coalib.processes.Processing.check_result_ignore (result, ignore_ranges)

Determines if the result has to be ignored.

Any result will be ignored if its origin matches any bear names and its SourceRange overlaps with the ignore
range.

Note that everything after a space in the origin will be cut away, so the user can ignore results with an origin like
CSecurityBear (buffer) with just # Ignore CSecurityBear.

Parameters
e result — The result that needs to be checked.

* ignore_ranges — A list of tuples, each containing a list of lower cased affected bear-
names and a SourceRange to ignore. If any of the bearname lists is empty, it is considered
an ignore range for all bears. This may be a list of globbed bear wildcards.

Returns True if the result has to be ignored.

coalib.processes.Processing.create_process_group (command_array, **kwargs)

coalib.processes.Processing.execute_section (section, global_bear_list, local_bear_list,

print_results, cache, log_printer, con-

sole_printer)
Executes the section with the given bears.

The execute_section method does the following things:
1.Prepare a Process - Load files - Create queues
2.Spawn up one or more Processes
3.Output results from the Processes

4 Join all processes

Parameters
e section — The section to execute.

* global_bear_1list — List of global bears belonging to the section. Dependencies are
already resolved.

* local_bear_ list — List of local bears belonging to the section. Dependencies are
already resolved.

* print_results — Prints all given results appropriate to the output medium.
¢ cache — Aninstance of misc.Caching.FileCache to use as a file cache buffer.
* log_printer — The log_printer to warn to.

* console_printer — Object to print messages on the console.

1.1.

Subpackages 91

coala Documentation, Release 0.11.0

Returns Tuple containing a bool (True if results were yielded, False otherwise), a Manager.dict
containing all local results(filenames are key) and a Manager.dict containing all global bear
results (bear names are key) as well as the file dictionary.

coalib.processes.Processing.£ill_queue (queue_fill, any_list)
Takes element from a list and populates a queue with those elements.
Parameters
* queue_fill - The queue to be filled.
* any_list — List containing the elements.

coalib.processes.Processing.filter_raising_callables (it, exception, *args, **kwargs)
Filters all callable items inside the given iterator that raise the given exceptions.

Parameters
* it — The iterator to filter.
* exception — The (tuple of) exception(s) to filter for.
* args — Positional arguments to pass to the callable.
* kwargs — Keyword arguments to pass to the callable.
coalib.processes.Processing.get_cpu_count ()

coalib.processes.Processing.get_default_actions (section)
Parses the key default_actions in the given section.

Parameters section — The section where to parse from.

Returns A dict with the bearname as keys and their default actions as values and another dict that
contains bears and invalid action names.

coalib.processes.Processing.get_file_dict (filename_list, log_printer)
Reads all files into a dictionary.

Parameters
* filename_1list — List of names of paths to files to get contents of.
* log_printer — The logger which logs errors.

Returns Reads the content of each file into a dictionary with filenames as keys.

coalib.processes.Processing.get_file_list (results)
Get the set of files that are affected in the given results.

Parameters results — A list of results from which the list of files is to be extracted.
Returns A set of file paths containing the mentioned list of files.

coalib.processes.Processing.get_ignore_scope (line, keyword)
Retrieves the bears that are to be ignored defined in the given line.

Parameters
* line — The line containing the ignore declaration.

* keyword — The keyword that was found. Everything after the rightmost occurrence of it
will be considered for the scope.

Returns A list of lower cased bearnames or an empty list (-> “all”)

coalib.processes.Processing.get_running_ processes (processes)

92 Chapter 1. coalib package

coala Documentation, Release 0.11.0

coalib.processes.Processing.instantiate_bears (section, local_bear_list, global_bear_list,

file_dict, message_queue, con-
sole_printer)

Instantiates each bear with the arguments it needs.

Parameters

section — The section the bears belong to.

local_bear_ 1list —List of local bear classes to instantiate.

global_bear_1list - List of global bear classes to instantiate.

file_dict — Dictionary containing filenames and their contents.

message_queue — Queue responsible to maintain the messages delivered by the bears.

console_printer — Object to print messages on the console.

Returns The local and global bear instance lists.

coalib.processes.Processing.instantiate_processes (section, local_bear_list,

global_bear_list, job_count, cache,
log_printer, console_printer)

Instantiate the number of processes that will run bears which will be responsible for running bears in a multi-
processing environment.

Parameters

section - The section the bears belong to.

local_bear_1list — List of local bears belonging to the section.
global_bear_1list - List of global bears belonging to the section.

job_count — Max number of processes to create.

cache — Aninstance of misc.Caching.FileCache to use as a file cache buffer.
log_printer — The log printer to warn to.

console_printer — Object to print messages on the console.

Returns A tuple containing a list of processes, and the arguments passed to each process which are
the same for each object.

coalib.processes.Processing.print_result (results, file_dict, retval, print_results, section,

log_printer, file_diff dict, ignore_ranges, con-
sole_printer)

Takes the results produced by each bear and gives them to the print_results method to present to the user.

Parameters

results — A list of results.
file_dict — A dictionary containing the name of files and its contents.

retval - It is True if no results were yielded ever before. If it is False this function will
return False no matter what happens. Else it depends on if this invocation yields results.

print_results — A function that prints all given results appropriate to the output
medium.

file diff dict - A dictionary that contains filenames as keys and diff objects as val-
ues.

1.1. Subpackages 93

coala Documentation, Release 0.11.0

* ignore_ranges — A list of SourceRanges. Results that affect code in any of those ranges
will be ignored.

* console_printer — Object to print messages on the console.
Returns Returns False if any results were yielded. Else True.

coalib.processes.Processing.process_queues (processes, control_queue, local_result_dict,
global_result_dict, file_dict, print_results, sec-

tion, cache, log_printer, console_printer)
Iterate the control queue and send the results received to the print_result method so that they can be presented

to the user.
Parameters
* processes — List of processes which can be used to run Bears.

* control_gqueue — Containing control elements that indicate whether there is a result
available and which bear it belongs to.

* local_result_dict — Dictionary containing results respective to local bears. It is
modified by the processes i.e. results are added to it by multiple processes.

* global_result_dict - Dictionary containing results respective to global bears. It is
modified by the processes i.e. results are added to it by multiple processes.

* file_ dict — Dictionary containing file contents with filename as keys.
* print_results — Prints all given results appropriate to the output medium.
* cache — Aninstance of misc.Caching.FileCache to use as a file cache buffer.

Returns Return True if all bears execute successfully and Results were delivered to the user. Else
False.

coalib.processes.Processing.simplify section_result (section_result)
Takes in a section’s result from execute_section and simplifies it for easy usage in other functions.

Parameters section_result — The result of a section which was executed.

Returns Tuple containing: - bool - True if results were yielded - bool - True if unfixed results were
yielded - list - Results from all bears (local and global)

coalib.processes.Processing.yield ignore_ranges (file_dict)
Yields tuples of affected bears and a SourceRange that shall be ignored for those.

Parameters file_dict — The file dictionary.

Module contents
coalib.results package

Subpackages

coalib.results.result_actions package

Submodules

94 Chapter 1. coalib package

coala Documentation, Release 0.11.0

coalib.results.result_actions.ApplyPatchAction module

class coalib.results.result_actions.ApplyPatchAction.ApplyPatchAction
Bases: coalib.results.result_actions.ResultAction.ResultAction

SUCCESS_MESSAGE = ‘Patch applied successfully.’

apply (result, original_file_dict, file_diff_dict, no_orig: bool = False)
Apply patch

Parameters no_orig — Whether or not to create .orig backup files

static is_applicable (result: coalib.results.Result.Result, original_file_dict, file_diff dict)

coalib.results.result_actions.lgnoreResultAction module

class coalib.results.result_actions.IgnoreResultAction.IgnoreResultAction
Bases: coalib.results.result_actions.ResultAction.ResultAction

SUCCESS_MESSAGE = ‘An ignore comment was added to your source code.’

apply (result, original_file_dict, file_diff_dict, language: str, no_orig: bool = False)
Add ignore comment

get_ignore_comment (origin, language)
Returns a string of Ignore Comment, depending on the language Supports Single Line Comments

And Multiline Comments

static is_applicable (result: coalib.results.Result.Result, original_file_dict, file_diff _dict)
For being applicable, the result has to point to a number of files that have to exist i.e. have not been
previously deleted.

coalib.results.result_actions.OpenEditorAction module

class coalib.results.result_actions.OpenEditorAction.OpenEditorAction
Bases: coalib.results.result_actions.ResultAction.ResultAction

SUCCESS_MESSAGE = ‘Changes saved successfully.’

apply (result, original_file_dict, file_diff_dict, editor: str)
Open file(s)

Parameters editor — The editor to open the file with.

build_editor_call_args (editor, editor_info, filenames)
Create argument list which will then be used to open an editor for the given files at the correct positions, if
applicable.

Parameters

* editor — The editor to open the file with.

1.1. Subpackages 95

coala Documentation, Release 0.11.0

* editor_info — A dict containing the keys args and file_arg_template, pro-
viding additional call arguments and a template to open files at a position for this editor.

* filenames — A dict holding one entry for each file to be opened. Keys must be
filename, line and column.

static is_applicable (result: coalib.results.Result.Result, original_file_dict, file_diff _dict)
For being applicable, the result has to point to a number of files that have to exist i.e. have not been
previously deleted.

coalib.results.result_actions.PrintAspectAction module

class coalib.results.result_actions.PrintAspectAction.PrintAspectAction
Bases: coalib.results.result_actions.ResultAction.ResultAction

apply (result, original_file_dict, file_diff dict)
Print Aspect Information

static is_applicable (result: coalib.results.Result.Result, original_file_dict, file_diff _dict)

coalib.results.result_actions.PrintDebugMessageAction module

class coalib.results.result_actions.PrintDebugMessageAction.PrintDebugMessageAction
Bases: coalib.results.result_actions.ResultAction.ResultAction

apply (result, original_file_dict, file_diff dict)
Print debug message

static is_applicable (result: coalib.results.Result.Result, original_file_dict, file_diff _dict)

coalib.results.result_actions.PrintMorelnfoAction module

class coalib.results.result_actions.PrintMoreInfoAction.PrintMoreInfoAction
Bases: coalib.results.result_actions.ResultAction.ResultAction

apply (result, original_file_dict, file_diff dict)
Print more info

static is_applicable (result: coalib.results.Result.Result, original_file_dict, file_diff _dict)

coalib.results.result_actions.ResultAction module

A ResultAction is an action that is applicable to at least some results. This file serves the base class for all result
actions, thus providing a unified interface for all actions.

class coalib.results.result_actions.ResultAction.ResultAction
Bases: object

SUCCESS_MESSAGE = ‘The action was executed successfully.’

apply (result, original_file_dict, file_diff _dict, **kwargs)
No description. Something went wrong.

96 Chapter 1. coalib package

coala Documentation, Release 0.11.0

apply_from_section (result, original_file_dict: dict, file_diff dict: dict, section:
coalib.settings.Section.Section)

Applies this action to the given results with all additional options given as a section. The file dictionaries

are needed for differential results.
Parameters
e result — The result to apply.

* original_ file_ dict — A dictionary containing the files in the state where the result
was generated.

e file diff_ dict — A dictionary containing a diff for every file from the state in the
original_file_dict to the current state. This dict will be altered so you do not need to use
the return value.

¢ section — The section where to retrieve the additional information.
Returns The modified file_diff dict.

classmethod get_metadata ()

Retrieves metadata for the apply function. The description may be used to advertise this action to the user.
The parameters and their help texts are additional information that are needed from the user. You can

create a section out of the inputs from the user and use apply_from_section to apply
:return A FunctionMetadata object.

static is_applicable (result, original_file_dict, file_diff dict)
Checks whether the Action is valid for the result type.

Returns True or a string containing the not_applicable message.
Parameters
e result — The result from the coala run to check if an Action is applicable.

* original file_ dict — A dictionary containing the files in the state where the result
was generated.

e file diff_ dict — A dictionary containing a diff for every file from the state in the
original_file_dict to the current state. This dict will be altered so you do not need to use
the return value.

coalib.results.result_actions.ShowPatchAction module

class coalib.results.result_actions.ShowPatchAction.ShowPatchAction
Bases: coalib.results.result_actions.ResultAction.ResultAction

SUCCESS_MESSAGE = ‘Displayed patch successfully.’

apply (result, original_file_dict, file_diff_dict, colored: bool = True, show_result_on_top: bool = False)
Show patch

Parameters

* colored — Whether or not to use colored output.

* show_result_on_top — Set this to True if you want to show the result info on top.

(Useful for e.g. coala_ci.)

static is_applicable (result: coalib.results.Result.Result, original_file_dict, file_diff _dict)

1.1. Subpackages

97

coala Documentation, Release 0.11.0

coalib.results.result_actions.ShowPatchAction.format_1line (line, real_nr="",
sign="l", mod_nr="",
symbol="")

coalib.results.result_actions.ShowPatchAction.print_beautified_diff (difflines,
printer)

coalib.results.result_actions.ShowPatchAction.print_£from_name (printer, line)

coalib.results.result_actions.ShowPatchAction.print_to_name (printer, line)

Module contents

The result_actions package holds objects deriving from ResultAction. A ResultAction represents an action that an be
applied to a result.

Submodules
coalib.results.AbsolutePosition module

class coalib.results.AbsolutePosition.AbsolutePosition (fext: (<class ‘tuple’>, <class
‘list’>, None) = None, position:
(<class ‘int’>, None) = None)
Bases: coalib.results.TextPosition.TextPosition

position

coalib.results.AbsolutePosition.calc_line_col (text, position)
Creates a tuple containing (line, column) by calculating line number and column in the text, from position.

The position represents the index of a character. In the following example ‘a’ is at position ‘0’ and it’s corre-
sponding line and column are:

All special characters(including the newline character) belong in the same line, and have their own position. A
line is an item in the tuple:

Parameters
* text — A tuple/list of lines in which position is to be calculated.
* position — Position (starting from 0) of character to be found in the (line, column) form.

Returns A tuple of the form (line, column), where both line and column start from 1.

coalib.results.Diff module

class coalib.results.Diff.Dif¥f (file_list, rename=False, delete=False)
Bases: object

A Diff result represents a difference for one file.

98 Chapter 1. coalib package

coala Documentation, Release 0.11.0

add_1line (line_nr_before, line)
Adds line after the given line number.

Parameters

e line nr before — Line number of the line before the addition. Use O to insert line
before everything.

e line — Line to add.

add_1lines (line_nr_before, lines)
Adds lines after the given line number.

Parameters

e line_nr_before — Line number of the line before the additions. Use O for insert lines
before everything.

e lines — A list of lines to add.

affected_code (filename)
Creates a list of SourceRange objects which point to the related code. Changes on continuous lines will be
put into one SourceRange.

Parameters filename — The filename to associate the SourceRange’s to.
Returns A list of all related SourceRange objects.

change_line (line_nr, original_line, replacement)

delete
Returns True if file is set to be deleted.

delete_ line (line_nr)
Mark the given line nr as deleted. The first line is line number 1.

Raises an exception if line number doesn’t exist in the diff.

delete lines (line_nr_start, line_nr_end)
Delete lines in a specified range, inclusively.

The range must be valid, i.e. lines must exist in diff, else an exception is raised.

classmethod from clang fixit (fixit, file)
Creates a Diff object from a given clang fixit and the file contents.

Parameters

e fixit — A cindex.Fixit object.

» file — Alist of lines in the file to apply the fixit to.
Returns The corresponding Diff object.

classmethod from_string_ arrays (file_array_l, file_array_2, rename=False)
Creates a Diff object from two arrays containing strings.

If this Diff is applied to the original array, the second array will be created.
Parameters
e file_array 1 — Original array
e file_array_ 2 — Array to compare

¢ rename — False or str containing new name of file.

1.1.

Subpackages 99

coala Documentation, Release 0.11.0

classmethod from_unified_diff (unified_diff, original_file)
Creates a Diff object from given unified diff.

If the provided unified diff does not contain any patch, the D1 f £ object initialized from the original file is
returned.

Parameters
* unified_ diff — Unified diff string.
* original_file - The contents of the original file (line-splitted).

Raises RuntimeError — Raised when the context lines or the lines to be removed do not
match in the original file and the unified diff.

insert (position, text)
Inserts (multiline) text at arbitrary position.

coalib.results.TextPosition
insert
2, 3
1, 1
2, 4
Parameters

e position - The TextPosition where to insert text.
* text — The text to insert.
modified
Calculates the modified file, after applying the Diff to the original.

modify_line (line_nr, replacement)
Changes the given line with the given line number. The replacement will be there instead.

Given an empty diff object:

We can change a line easily:

We can even merge changes within one line:

1

100 Chapter 1. coalib package

coala Documentation, Release 0.11.0

However, if we change something that has been changed before, we’ll get a conflict:

1

Traceback (most recent call last):

coalib.results.LineDiff.ConflictError:

original
Retrieves the original file.
range (filename)

Calculates a SourceRange spanning over the whole Diff. If something is added after the Oth line (i.e.
before the first line) the first line will be included in the SourceRange.

The range of an empty diff will only affect the filename:

range
range

print (range

Parameters filename — The filename to associate the SourceRange with.

Returns A SourceRange object.

remove (range)
Removes a piece of text in a given range.

coalib.results.TextRange

remove (range

range
1, 1, 1, 4
1, 5, 2,1
1, 3, 3, 2
2,1, 2,1

Parameters range — The range to delete.

rename
Returns string containing new name of the file.

replace (range, replacement)
Replaces a part of text. Allows to span multiple lines.

This function uses add_lines and delete_lines accordingly, so calls of those functions on lines
given range affects after usage or vice versa lead to ConflictError.

1.1.

Subpackages 101

coala Documentation, Release 0.11.0

coalib.results.TextRange

replace (range

range
1, 5, 4, 3
2, 1, 3, 5
1, 6, 4, 3

Parameters
* range — The TextRange that gets replaced.
* replacement — The replacement string. Can be multiline.
split_diff (distance=1)

Splits this diff into small pieces, such that several continuously altered lines are still together in one diff.
All subdiffs will be yielded.

A diff like this with changes being together closely won’t be splitted:

len(list

If we set the distance to 0, it will be splitted:

len(list 0

If a negative distance is given, every change will be yielded as an own diff, even if they are right beneath
each other:

len(list 1

If a file gets renamed or deleted only, it will be yielded as is:

len(list

An empty diff will not yield any diffs:

len(list

Parameters distance — Number of unchanged lines that are allowed in between two changed
lines so they get yielded as one diff.

stats ()
Returns tuple containing number of additions and deletions in the diff.

102 Chapter 1. coalib package

coala Documentation, Release 0.11.0

unified diff

Generates a unified diff corresponding to this patch.

Note that the unified diff is not deterministic and thus not suitable for equality comparison.

coalib.results.HiddenResult module

class coalib.results.HiddenResult .HiddenResult (origin, contents)
Bases: coalib.results.Result.Result

This is a result that is not meant to be shown to the user. It can be used to transfer any data from a dependent

bear to others.

coalib.results.LineDiff module

exception coalib.results.LineDiff.ConflictError

Bases: Exception

class coalib.results.LineDiff.LineDiff (change=False, delete=False, add_after="False)

Bases: object

A LineDiff holds the difference between two strings.

add_after
change

delete

coalib.results.RESULT_SEVERITY module

coalib.results.Result module

class coalib.results.Result .Result (origin, message: str, affected_code: (<class ‘tuple’>,

Bases: object

<class ‘list’>) = (), severity: int = 1, additional_info:

str = ', debug_msg="‘, diffs: (<class ‘dict’>, None)
= None, confidence: int = 100, aspect: (<class
‘coalib.bearlib.aspects.base.aspectbase’>, None) = None,

message_arguments: dict = {})

A result is anything that has an origin and a message.

Optionally it might affect a file.

Result messages can also have arguments. The message is python style formatted with these arguments.

Message arguments may be changed later. The result message will also reflect these changes.

1.1. Subpackages

103

coala Documentation, Release 0.11.0

apply (file_dict: dict)
Applies all contained diffs to the given file_dict. This operation will be done in-place.

Parameters file_ dict — A dictionary containing all files with filename as key and all lines
a value. Will be modified.

classmethod £rom values (origin, message: str, file: str, line: (<class ‘int’>, None) =

None, column: (<class ‘int’>, None) = None, end_line: (<class
‘int’>, None) = None, end_column: (<class ‘int’>, None) = None,
severity: int = 1, additional_info: str = ', debug_msg="‘, diffs:

(<class ‘dict’>, None) = None, confidence: int = 100, aspect:
(<class ‘coalib.bearlib.aspects.base.aspectbase’>, None) = None, mes-

sage_arguments: dict = {})
Creates a result with only one SourceRange with the given start and end locations.

Parameters
* origin — Class name or creator object of this object.
* message — Base message to show with this result.
* message_arguments — Arguments to be provided to the base message
e file — The related file.
¢ line — The first related line in the file. (First line is 1)
¢ column — The column indicating the first character. (First character is 1)
¢ end_1line — The last related line in the file.
* end_column — The column indicating the last character.
* severity — Severity of this result.

* additional_info - A long description holding additional information about the issue
and/or how to fix it. You can use this like a manual entry for a category of issues.

* debug_msg — A message which may help the user find out why this result was yielded.
* diffs — A dictionary with filename as key and Di £ £ object associated with it as value.

* confidence — A number between 0 and 100 describing the likelihood of this result
being a real issue.

* aspect — An Aspect object which this result is associated to. Note that this should be
a leaf of the aspect tree! (If you have a node, spend some time figuring out which of the
leafs exactly your result belongs to.)

location_repr ()
Retrieves a string, that briefly represents the affected code of the result.

Returns A string containing all of the affected files separated by a comma.
message

overlaps (ranges)
Determines if the result overlaps with source ranges provided.

Parameters ranges — A list SourceRange objects to check for overlap.
Returns True if the ranges overlap with the result.

to_string dict ()
Makes a dictionary which has all keys and values as strings and contains all the data that the base Result
has.

104 Chapter 1. coalib package

coala Documentation, Release 0.11.0

FIXME: diffs are not serialized ATM. FIXME: Only the first SourceRange of affected_code is serialized.
If there are more, this data is currently missing.

Returns Dictionary with keys and values as string.

coalib.results.ResultFilter module

coalib.results.ResultFilter.basics_match (original_result, modified_result)
Checks whether the following properties of two results match: * origin * message * severity * debug_msg

Parameters

* original_result — A result of the old files

e modified_result — A result of the new files
Returns Boolean value whether or not the properties match

coalib.results.ResultFilter.ensure_files_present (original_file_ dict, modi-

fied_file_dict)
Ensures that all files are available as keys in both dicts.

Parameters
* original_file_dict — Dict of lists of file contents before changes
* modified_ file_dict — Dict of lists of file contents after changes
Returns Return a dictionary of renamed files.

coalib.results.ResultFilter.filter_results (original_file_dict, modified_file_dict, origi-

nal_results, modified_results)
Filters results for such ones that are unique across file changes

Parameters
* original_file_dict - Dict of lists of file contents before changes
* modified_ file_dict — Dict of lists of file contents after changes
* original_results — List of results of the old files
* modified results - List of results of the new files
Returns List of results from new files that are unique from all those that existed in the old changes

coalib.results.ResultFilter.remove_range (file_contents, source_range)
removes the chars covered by the sourceRange from the file

Parameters
e file contents — list of lines in the file
* source_range — Source Range
Returns list of file contents without specified chars removed

coalib.results.ResultFilter.remove_result_ranges_diffs (result_list, file_dict)
Calculates the diffs to all files in file_dict that describe the removal of each respective result’s affected code.

Parameters
e result_list — list of results

e file_ dict — dict of file contents

1.1. Subpackages 105

coala Documentation, Release 0.11.0

Returns returnvalue[result][file] is a diff of the changes the removal of this result’s affected code
would cause for the file.

coalib.results.ResultFilter.source_ranges_match (original_file_dict, diff_dict,
original_result_diff dict, modi-

fied_result_diff_dict, renamed_files)
Checks whether the SourceRanges of two results match

Parameters
* original_file_dict - Dict of lists of file contents before changes
* diff dict - Dict of diffs describing the changes per file
* original_result_diff dict — diff for each file for this result
* modified result_diff dict - guess
* renamed_files — A dictionary containing file renamings across runs

Returns Boolean value whether the SourceRanges match

coalib.results.SourcePosition module

class coalib.results.SourcePosition.SourcePosition (file: str, line=None, column=None)
Bases: coalib.results.TextPosition.TextPosition

file

coalib.results.SourceRange module

class coalib.results.SourceRange.SourceRange (start: coalib.results.SourcePosition.SourcePosition,

end: (<class
‘coalib.results.SourcePosition.SourcePosition’>,
None) = None)

Bases: coalib.results.TextRange.TextRange

affected_source (file_dict: dict)
Tells which lines are affected in a specified file within a given range.

os.path

If more than one line is affected.

If the file indicated at the source range is not in the file_dict or the lines are not given, this will return None:

106 Chapter 1. coalib package

coala Documentation, Release 0.11.0

Parameters file_dict — It is a dictionary where the file names are the keys and the contents
of the files are the values(which is of type tuple).

Returns A tuple of affected lines in the specified file. If the file is not affected or the file is not

present in file_dict return None.

expand (file_contents)
Passes a new SourceRange that covers the same area of a file as this one would. All values of None get
replaced with absolute values.

values of None will be interpreted as follows: self.start.line is None: -> 1 self.start.column is None: -> 1
self.end.line is None: -> last line of file self.end.column is None: -> last column of self.end.line

Parameters file contents — File contents of the applicable file

Returns TextRange with absolute values

file

classmethod from absolute_position (file: str, position_start:
coalib.results.AbsolutePosition.AbsolutePosition,
position_end: (<class

‘coalib.results.AbsolutePosition.AbsolutePosition’>,

None) = None)
Creates a SourceRange from a start and end positions.

Parameters
* file — Name of the file.
* position_start — Start of range given by AbsolutePosition.
* position_end - End of range given by AbsolutePosition or None.

classmethod from_clang_range (range)
Creates a SourceRange from a clang SourceRange object.

Parameters range — A cindex.SourceRange object.

classmethod from values (file, start_line=None, start_column=None, end_line=None,
end_column=None)

overlaps (other)
renamed_file (file_diff dict: dict)

Retrieves the filename this source range refers to while taking the possible file renamings in the given
file_diff _dict into account:

Parameters file diff dict — A dictionary with filenames as key and their associated Diff
objects as values.

coalib.results.TextPosition module

class coalib.results.TextPosition.TextPosition (line: (<class ‘int’>, None) = None, column:

(<class ‘int’>, None) = None)
Bases: object

1.1. Subpackages 107

coala Documentation, Release 0.11.0

column

line

coalib.results.TextRange module

class coalib.results.TextRange.TextRange (start: coalib.results. TextPosition.TextPosition, end:
(<class ‘coalib.results.TextPosition.TextPosition’>,

None) = None)
Bases: object

end

expand (text_lines)
Passes a new TextRange that covers the same area of a file as this one would. All values of None get

replaced with absolute values.

values of None will be interpreted as follows: self.start.line is None: -> 1 self.start.column is None: -> 1
self.end.line is None: -> last line of file self.end.column is None: -> last column of self.end.line

Parameters text_lines - File contents of the applicable file
Returns TextRange with absolute values

classmethod £from_values (start_line=None, start_column=None, end_line=None,

end_column=None)
Creates a new TextRange.

Parameters

e start_line — The line number of the start position. The first line is 1.
* start_column — The column number of the start position. The first column is 1.

* end_line - The line number of the end position. If this parameter is None, then the end
position is set the same like start position and end_column gets ignored.

* end_column — The column number of the end position.
Returns A TextRange.

classmethod join (a, b)
Creates a new TextRange that covers the area of two overlapping ones

Parameters
* a — TextRange (needs to overlap b)
* b — TextRange (needs to overlap a)

Returns A new TextRange covering the union of the Area of a and b
overlaps (other)

start

Module contents
coalib.settings package

Submodules

108 Chapter 1. coalib package

coala Documentation, Release 0.11.0

coalib.settings.Annotations module

coalib.settings.Annotations.typechain (*args)
Returns function which applies the first transformation it can from args and returns transformed value, or the
value itself if it is in args.

int ord

int

Traceback (most recent call last):

ValueError:

—

Raises TypeError — Raises when either no functions are specified for checking.

coalib.settings.ConfigurationGathering module

coalib.settings.ConfigurationGathering.find_user_config (file_path, max_trials=10)
Uses the filepath to find the most suitable user config file for the file by going down one directory at a time and
finding config files there.

Parameters
* file path - The path of the file whose user config needs to be found
* max_trials — The maximum number of directories to go down to.
Returns The config file’s path, empty string if none was found

coalib.settings.ConfigurationGathering.gather_configuration (acquire_settings,
log_printer,
arg_list=None,

arg_parser=None)
Loads all configuration files, retrieves bears and all needed settings, saves back if needed and warns about

non-existent targets.
This function:
*Reads and merges all settings in sections from
—Default config
—User config
—Configuration file
—CLI
*Collects all the bears

*Fills up all needed settings

1.1. Subpackages 109

coala Documentation, Release 0.11.0

*Writes back the new sections to the configuration file if needed

*Gives all information back to caller

Parameters

* acquire_settings — The method to use for requesting settings. It will get a parameter
which is a dictionary with the settings name as key and a list containing a description in [0]
and the names of the bears who need this setting in all following indexes.

* log_printer — The log printer to use for logging. The log level will be adjusted to the
one given by the section.

* arg_list — CLI args to use
* arg_parser — Instance of ArgParser that is used to parse none-setting arguments.
Returns
A tuple with the following contents:
* A dictionary with the sections
* Dictionary of list of local bears for each section
* Dictionary of list of global bears for each section
* The targets list
coalib.settings.ConfigurationGathering.get_config directory (section)
Retrieves the configuration directory for the given section.

Given an empty section:

The configuration directory is not defined and will therefore fallback to the current directory:

If the £iles setting is given with an originating coafile, the directory of the coafile will be assumed the config-
uration directory:

However if its origin is already a directory this will be preserved:

The user can manually set a project directory with the project_dir setting:

110 Chapter 1. coalib package

coala Documentation, Release 0.11.0

If no section is given, the current directory is returned:

To summarize, the config directory will be chosen by the following priorities if possible in that order:
ethe project_dir setting
othe origin of the £iles setting, if it’s a directory
ethe directory of the origin of the £iles setting

ethe current directory

Parameters section — The section to inspect.
Returns The directory where the project is lying.

coalib.settings.ConfigurationGathering.get_filtered bears (languages, log printer,

arg_parser=None)
Fetch bears and filter them based on given list of languages.

Parameters
* languages - List of languages.
* log_printer — The log_printer to handle logging.
* arg_parser — An ArgParser object.
Returns Tuple containing dictionaries of local bears and global bears.

coalib.settings.ConfigurationGathering.load_config_file (filename, log_printer,

silent=Fualse)
Loads sections from a config file. Prints an appropriate warning if it doesn’t exist and returns a section dict

containing an empty default section in that case.
It assumes that the cli_sections are available.
Parameters
* filename — The file to load settings from.
* log_printer — The log printer to log the warning/error to (in case).
* silent — Whether or not to warn the user/exit if the file doesn’t exist.

Raises SystemExit — Exits when the given filename is invalid and is not the default coafile. Only
raised when silent is False.

coalib.settings.ConfigurationGathering.load_configuration (arg_list, log_printer,

arg_parser=None)
Parses the CLI args and loads the config file accordingly, taking default_coafile and the users .coarc into account.

Parameters
* arg_list — The list of command line arguments.
* log_printer — The LogPrinter object for logging.

Returns A tuple holding (log_printer: LogPrinter, sections: dict(str, Section), targets: list(str)).
(Types indicated after colon.)

1.1. Subpackages 111

coala Documentation, Release 0.11.0

coalib.settings.ConfigurationGathering.merge_section_dicts (lower, higher)
Merges the section dictionaries. The values of higher will take precedence over the ones of lower. Lower will
hold the modified dict in the end.

Parameters

* lower — A section.

* higher — A section which values will take precedence over the ones from the other.
Returns The merged dict.

coalib.settings.ConfigurationGathering.save_sections (sections)
Saves the given sections if they are to be saved.

Parameters sections — A section dict.

coalib.settings.ConfigurationGathering.warn_config_absent (sections, argument,

log_printer)
Checks if the given argument is present somewhere in the sections and emits a warning that code analysis can

not be run without it.
Parameters
* sections — A dictionary of sections.
* argument — The argument to check for, e.g. “files”.
* log_printer — A log printer to emit the warning to.

coalib.settings.ConfigurationGathering.warn_nonexistent_targets (rargets,
sections,

log_printer)
Prints out a warning on the given log printer for all targets that are not existent within the given sections.

Parameters
* targets — The targets to check.
¢ sections - The sections to search. (Dict.)

* log_printer — The log printer to warn to.

coalib.settings.DocstringMetadata module

class coalib.settings.DocstringMetadata.DocstringMetadata (desc, param_dict, ret-

val_desc)
Bases: object

classmethod £rom_docstring (docstring)
Parses a python docstring. Usable attributes are: :param @param :return @return

112 Chapter 1. coalib package

coala Documentation, Release 0.11.0

coalib.settings.FunctionMetadata module

class coalib.settings.FunctionMetadata.FunctionMetadata (name: str, desc: str =
. retval_desc: str =
non_optional_params:
(<class ‘dict’>, None) =
None, optional_params:
(<class ‘dict’>, None) =
None, omit: (<class ‘set’>,
<class ‘tuple’>, <class
‘list’>, <class ‘frozenset’>)
= frozenset(), depre-
cated_params: (<class ‘set’>,
<class ‘tuple’>, <class
‘list’>, <class ‘frozenset’>) =

frozenset())
Bases: object

add_deprecated_param (original, alias)
Adds an alias for the original setting. The alias setting will have the same metadata as the original one. If
the original setting is not optional, the alias will default to None.

Parameters
* original - The name of the original setting.
* alias — The name of the alias for the original.
Raises KeyError — If the new setting doesn’t exist in the metadata.

create_params_from section (section)
Create a params dictionary for this function that holds all values the function needs plus optional ones that
are available.

Parameters section — The section to retrieve the values from.
Returns The params dictionary.

desc
Returns description of the function.

filter_parameters (dct)
Filters the given dict for keys that are declared as parameters inside this metadata (either optional or non-
optional).

You can use this function to safely pass parameters from a given dictionary:

multiply 2 0

10 20 30

You can safely pass the arguments to the function now:

Parameters dct — The dict to filter.

Returns A new dict containing the filtered items.

1.1. Subpackages 113

coala Documentation, Release 0.11.0

classmethod £rom_function (func, omit=frozenset())
Creates a FunctionMetadata object from a function. Please note that any variable argument lists are not
supported. If you do not want the first (usual named ‘self’) argument to appear please pass the method of
an actual INSTANCE of a class; passing the method of the class isn’t enough. Alternatively you can add
“self” to the omit set.

Parameters

e func - The function. If __metadata__ of the unbound function is present it will be copied
and used, otherwise it will be generated.

e omit — A set of parameter names that are to be ignored.
Returns The FunctionMetadata object corresponding to the given function.

classmethod merge (*metadatas)
Merges signatures of FunctionMetadata objects.

Parameter (either optional or non-optional) and non-parameter descriptions are merged from left to right,
meaning the right hand metadata overrides the left hand one.

a

100

Parameters metadatas — The sequence of metadatas to merge.

Returns A FunctionMetadata object containing the merged signature of all given meta-
datas.

non_optional_params
Retrieves a dict containing the name of non optional parameters as the key and a tuple of a description and
the python annotation. Values that are present in self.omit will be omitted.

114 Chapter 1. coalib package

coala Documentation, Release 0.11.0

optional_params
Retrieves a dict containing the name of optional parameters as the key and a tuple of a description, the
python annotation and the default value. Values that are present in self.omit will be omitted.

str_nodesc = ‘No description given.’

str_optional = “Optional, defaults to ‘{}’.”

coalib.settings.Section module

class coalib.settings.Section.Section (name, defaults=None)
Bases: object
This class holds a set of settings.

To add settings and sections to a dictionary of sections we can use append_to_sections:

We can also add settings that can be appended to other settings. Basically it takes the default value of the setting
which resides in the defaults of the section and appends the value of the setting in the second and returns the
value of the setting:

When the section has no defaults:

o)
t
K

After assigning defaults:

0
ct
R

add_or_create_setting (setting, custom_key=None, allow_appending=True)
Adds the value of the setting to an existing setting if there is already a setting with the key. Otherwise

creates a new setting.
append (setting, custom_key=None)

bear dirs ()

1.1. Subpackages 115

coala Documentation, Release 0.11.0

copy ()
Returns a deep copy of this object

delete_setting (key)
Delete a setting :param key: The key of the setting to be deleted

get (key, default="", ignore_defaults=False)
Retrieves the item without raising an exception. If the item is not available an appropriate Setting will be
generated from your provided default value.

Parameters

* key — The key of the setting to return.

* default - The default value

* ignore_defaults — Whether or not to ignore the default section.
Returns The setting.

is_enabled (targets)
Checks if this section is enabled or, if targets is not empty, if it is included in the targets list.

Parameters targets — List of target section names, all lower case.
Returns True or False

set_default_section (sections, section_name=None)
Find and set the defaults of a section from a dictionary of sections. The defaults are found on the basis of
¢’ in section names:

This works case insensitive. The key of the sections dict is expected to be lowered though!

Parameters

* sections — A dictionary of sections.

116 Chapter 1. coalib package

coala Documentation, Release 0.11.0

* section_name — Optional section name argument to find the default section for. If not
given then use member section name.

update (other_section, ignore_defaults=False)
Incorporates all keys and values from the other section into this one. Values from the other section override
the ones from this one.

Default values from the other section override the default values from this only.
Parameters
e other section — Another Section
e ignore_defaults - If set to true, do not take default values from other
Returns self

update_setting (key, new_key=None, new_value=None)
Updates a setting with new values. :param key: The old key string. :param new_key: The new key string.
:param new_value: The new value for the setting

coalib.settings.Section.append_to_sections (sections, key, value, origin, sec-
tion_name=None, from_cli=False,

to_append=False)
Appends the given data as a Setting to a Section with the given name. If the Section does not exist before it will

be created empty.
Parameters

* sections - The sections dictionary to add to.
* key — The key of the setting to add.
* value — The value of the setting to add.
* origin — The origin value of the setting to add.
* section_name — The name of the section to add to.
e from_cli — Whether or not this data comes from the CLI.

* to_append — The boolean value if setting value needs to be appended to a setting in the
defaults of a section.

coalib.settings.SectionFilling module

coalib.settings.SectionFilling.fill_section (section, acquire_settings, log_printer,

bears)
Retrieves needed settings from given bears and asks the user for missing values.

If a setting is requested by several bears, the help text from the latest bear will be taken.
Parameters

* section — A section containing available settings. Settings will be added if some are
missing.

* acquire_settings — The method to use for requesting settings. It will get a parameter
which is a dictionary with the settings name as key and a list containing a description in [0]
and the names of the bears who need this setting in all following indexes.

* log_printer - The log printer for logging.

* bears — All bear classes or instances.

1.1. Subpackages 117

coala Documentation, Release 0.11.0

Returns The new section.

coalib.settings.SectionFilling.£fill_settings (sections, acquire_settings, log_printer)
Retrieves all bears and requests missing settings via the given acquire_settings method.

This will retrieve all bears and their dependencies.
Parameters
* sections — The sections to fill up, modified in place.

* acquire_settings — The method to use for requesting settings. It will get a parameter
which is a dictionary with the settings name as key and a list containing a description in [0]
and the names of the bears who need this setting in all following indexes.

* log_printer — The log printer to use for logging.

Returns A tuple containing (local_bears, global_bears), each of them being a dictionary with the
section name as key and as value the bears as a list.

coalib.settings.Setting module

class coalib.settings.Setting.Setting (key, value, origin="°, strip_whitespaces=True,
list_delimiters=(", ‘), from_cli=False, re-

move_empty_iter_elements=True, to_append=False)
Bases: coala_utils.string_processing.StringConverter.StringConverter

A Setting consists mainly of a key and a value. It mainly offers many conversions into common data types.
key
value

coalib.settings.Setting.glob (0bj, *args, **kwargs)
Creates a path in which all special glob characters in all the parent directories in the given setting are properly
escaped.

Parameters obj — The Setting object from which the key is obtained.
Returns Returns a path in which special glob characters are escaped.

coalib.settings.Setting.glob_list (obj, *args, **kwargs)
Creates a list of paths in which all special glob characters in all the parent directories of all paths in the given
setting are properly escaped.

Parameters obj — The Setting object from which the key is obtained.

Returns Returns a list of paths in which special glob characters are escaped.
coalib.settings.Setting.path (obj, *args, **kwargs)
coalib.settings.Setting.path_list (obj, *args, **kwargs)

coalib.settings.Setting.typed_dict (key_type, value_type, default)
Creates a function that converts a setting into a dict with the given types.

Parameters
* key_type — The type conversion function for the keys.
* value_type — The type conversion function for the values.
* default - The default value to use if no one is given by the user.

Returns A conversion function.

118 Chapter 1. coalib package

coala Documentation, Release 0.11.0

coalib.settings.Setting.typed_list (conversion_func)
Creates a function that converts a setting into a list of elements each converted with the given conversion func-
tion.

Parameters conversion_func - The conversion function that converts a string into your desired
list item object.

Returns A conversion function.

coalib.settings.Setting.typed_ordered_dict (key_type, value_type, default)
Creates a function that converts a setting into an ordered dict with the given types.

Parameters

* key_type — The type conversion function for the keys.

* value_type — The type conversion function for the values.

* default — The default value to use if no one is given by the user.
Returns A conversion function.

coalib.settings.Setting.url (obj, *args, **kwargs)

Module contents

coalib.testing package

Submodules

coalib.testing.BearTestHelper module

coalib.testing.BearTestHelper.generate_skip_decorator (bear)
Creates a skip decorator for a unittest module test from a bear.
check_prerequisites is used to determine a test skip.

Parameters bear — The bear whose prerequisites determine the test skip.

Returns A decorator that skips the test if appropriate.

coalib.testing.LocalBearTestHelper module
class coalib.testing.LocalBearTestHelper.LocalBearTestHelper (methodName="runTest’)
Bases: unittest.case.TestCase
This is a helper class for simplification of testing of local bears.
Please note that all abstraction will prepare the lines so you don’t need to do that if you use them.
If you miss some methods, get in contact with us, we’ll be happy to help!

check_results (local_bear, lines, results, filename=None, check_order=False,

force_linebreaks=True, create_tempfile=True, tempfile_kwargs={}, settings={})
Asserts that a check of the given lines with the given local bear does yield exactly the given results.

Parameters
e local_bear — The local bear to check with.

¢ lines — The lines to check. (List of strings)

1.1. Subpackages 119

coala Documentation, Release 0.11.0

* results — The expected list of results.
e filename — The filename, if it matters.

* force_linebreaks — Whether to append newlines at each line if needed. (Bears
expect a n for every line)

* create_tempfile — Whether to save lines in tempfile if needed.
* tempfile_kwargs — Kwargs passed to tempfile.mkstemp().

* settings — A dictionary of keys and values (both strings) from which settings will be
created that will be made available for the tested bear.

check_validity (local_bear, lines, filename=None, valid=True, force_linebreaks=True, cre-

ate_tempfile=True, tempfile_kwargs={})

Asserts that a check of the given lines with the given local bear either yields or does not yield any results.

Parameters

¢ local bear — The local bear to check with.
e lines — The lines to check. (List of strings)
e filename — The filename, if it matters.

* valid — Whether the lines are valid or not.

* force_linebreaks — Whether to append newlines at each line if needed. (Bears
expect a n for every line)

* create_tempfile — Whether to save lines in tempfile if needed.

* tempfile_kwargs — Kwargs passed to tempfile.mkstemp().

coalib.testing.LocalBearTestHelper.execute_bear (bear, *args, **kwargs)

coalib.testing.LocalBearTestHelper.verify local_bear (bear, valid_files, invalid_files,

filename=None, settings={},
force_linebreaks=True,
create_tempfile=True,
timeout=None, temp-
file_kwargs={})

Generates a test for a local bear by checking the given valid and invalid file contents. Simply use it on your
module level like:

YourTestName = verify_local_bear(YourBear, ([’valid line’],), ([’invalid line’],))

Parameters

bear — The Bear class to test.

valid_files — An iterable of files as a string list that won’t yield results.
invalid_files — Aniterable of files as a string list that must yield results.
filename - The filename to use for valid and invalid files.

settings — A dictionary of keys and values (both string) from which settings will be
created that will be made available for the tested bear.

force_linebreaks — Whether to append newlines at each line if needed. (Bears expect
a n for every line)

create_tempfile — Whether to save lines in tempfile if needed.

timeout — The total time to run the test for.

120

Chapter 1. coalib package

coala Documentation, Release 0.11.0

* tempfile_kwargs — Kwargs passed to tempfile.mkstemp() if tempfile needs to be cre-
ated.

Returns A unittest. TestCase object.

Module contents

Submodules

coalib.coala module

coalib.coala.main ()

coalib.coala_ci module

coalib.coala_ci.main ()

coalib.coala_delete_orig module

coalib.coala_delete_orig.main (log_printer=None, section: coalib.settings.Section.Section =

None)

coalib.coala_format module

coalib.coala_format.main ()

coalib.coala_json module

coalib.coala_json.main ()

coalib.coala_main module

coalib.coala_main.do_nothing (*args)

coalib.coala_main.run_coala (console_printer=None, log_printer=None, print_results=<function

do_nothing>, acquire_settings=<function fail_acquire_settings>,
print_section_beginning=<function do_nothing>, noth-
ing_done=<function do_nothing>, autoapply=True,

force_show_patch=False, arg_parser=None, arg_list=None)
This is a main method that should be usable for almost all purposes and reduces executing coala to one function

call.
Parameters

* console_printer — Object to print messages on the console.

1.2

Submodules 121

coala Documentation, Release 0.11.0

* log_printer — A LogPrinter object to use for logging.

* print_results — A callback that takes a LogPrinter, a section, a list of results to be
printed, the file dict and the mutable file diff dict.

* acquire_settings — The method to use for requesting settings. It will get a parameter
which is a dictionary with the settings name as key and a list containing a description in [0]
and the names of the bears who need this setting in all following indexes.

* print_section_beginning — A callback that will be called with a section name
string whenever analysis of a new section is started.

* nothing_done — A callback that will be called with only a log printer that shall indicate
that nothing was done.

* autoapply — Set this to false to not autoapply any actions. If you set this to False,
force_show_patch will be ignored.

* force_show_patch — If set to True, a patch will be always shown. (Using Apply-
PatchAction.)

* arg_parser — Instance of ArgParser that is used to parse non-setting arguments.
* arg_list — The CLI argument list.

Returns A dictionary containing a list of results for all analyzed sections as key.

coalib.coala_modes module

coalib.coala_modes.mode_format ()
coalib.coala_modes.mode_json (args)
coalib.coala_modes.mode_non_interactive (console_printer, args)

coalib.coala_modes.mode_normal (console_printer, log_printer)

Module contents

The coalib package is a collection of various subpackages regarding writing, executing and editing bears. Various
other packages such as formatting and settings are also included in coalib.

coalib.assert_supported_version ()

coalib.get_vwversion ()

122 Chapter 1. coalib package

CHAPTER 2

Welcome to the Newcomers Guide!

DO NOT WORK ON ANY ISSUE WITHOUT ASSIGNMENT! If you do, someone else might work on it as well
and we might have no choice but reject one of your Pull Requests - we hate it if anyone wastes their time. For your
own sake, please follow this guide. We put a lot of work into this for you!

Everyone in the coala community is expected to follow our Code of Conduct.

To become part of the coala developers team, there are a few steps you need to complete. The newcomer process is as
follows:

You will start as a newcomer, which is kind of a trial. If you complete the following tasks, you will become a developer
at coala:

* run coala on a project of yours

* merge adifficulty/newcomer Pull Request

e review at leasta difficulty/newcomer Pull Request

e merge adifficulty/low Pull Request

* review at leasta difficulty/low or higher Pull Request

When you ran coala on a project, please fill our usability survey. Once you got your first Pull Request merged
successfully, fill in our survey form. With that you can help us making your experience better!

Once you have achieved all these, just ask for being promoted on the chat and provide links to your reviews and
merged Pull Requests. Then, you will be able to name yourself a coala developer!

Note: Do not only fix a newcomer issue! Supervising newcomers is really a lot of work. We’re all volunteers and
we can’t keep this up if you don’t help us in other areas as well!

Of course, the order is not important, although, we recommend you to start with a newcomer issue, end with a Low
issue, and review other PRs in the meantime!

This is a step-based guide that will help you get your first contribution at coala, making you familiar with the work
flow!

For more information about Pull Requests, keep reading!

Note: You do not need to read the coala codebase to get started - this guide is intended to help you do that without
reading tons of meaningless code. Nobody is good at that.

123

http://coala.io/coc
http://coala.io/usability
http://coala.io/newform

coala Documentation, Release 0.11.0

Most importantly, this guide is not intended to “check if you are fit” to contribute but rather a crash course to make
you fit to contribute. We are a bit picky when it comes to code quality but it’s actually not at all hard to get to this level
if you bear with us through this guide.

Step 0. Run coala

As a preparation of joining the community you should find out what this project is about - if you didn’t do this already.
We highly recommend you install coala and use it on at least one of your projects. Also, we recommend that you read
development setup notes to learn how to set up an environment to work on coala.

Most importantly, keep notes of what could be better to make the usage easier! What documentation was missing?
What was hard to understand?

Note: Struggling with this? We have a very verbose guide on this topic in our Google Code In resources which can
help you find a suitable repository and run coala on a bigger project.

Once you complete this, please take the time and fill this form so we can improve this!

Step 1. Meet the Community!

To get started, the first step is to meet the community. We use gitter to communicate, and there the helpful community
will guide you. Join us at coala gitter. The newcomers should ping us “Hello World” to let us know they are here
because we care!

Congratulations! You are now part of our community.

Step 2. Grab an Invitation to the Organization

Let us know on gitter that you are interested in contributing and ask for an invitation to our org. This is your first step
towards contributing. A maintainer will command cobot (our gitter bot) to invite you and be part of the Newcomer
team. The invitation will be sent by mail and you will have to accept it to join. If you don’t find the invitation, accept
it here.

Now that you are part of our organization, you can start working on issues. If you are familiar with git, you can skip
the next section and pick an issue.

Optional. Get Help With Git

We use GitHub to manage our repository. If you’re not familiar with git, we strongly recommend following a tutorial,
such as this one.

We also have a page dedicated to git commands that will help you learn the basics: here.

If there’s anything unclear, or you are encountering problems, feel free to contact us on gitter, and we will help you!

124 Chapter 2. Welcome to the Newcomers Guide!

https://coala.io/install
http://coala.io/devsetup
https://github.com/coala/coala/wiki/Google-Code-In-Task-Use-coala
https://coala.io/usability
https://coala.io/chat
https://github.com/coala
https://try.github.io/levels/1/challenges/1
http://coala.io/git
https://coala.io/chat

coala Documentation, Release 0.11.0

Step 3. Picking Up an Issue

Now it is time to pick an issue. It is the best way to familiarise yourself with the codebase. Here is the link that will
lead you to Newcomers issues.

Note: You need to be logged in before you follow the Newcomers issues link.

See also:
For more information about what bears are, please check the following link: Writing Native bears

The easy issues that will help you get started are labeled as di fficulty/newcomer and are only there to give you
a glimpse of how it is to work with us and regarding the workflow.

Now pick an issue which isn’t assigned, and if you want to fix it, then leave a comment that you would like to get
assigned. This way we don’t have multiple people working on the same issue at the same time. Now you can start
working on it.

Note: As stated before, you should never work on an issue without any assignment. Fortunately, cobot is here to help
you! So, if you are interested in picking up an issue just write in the gitter chat the following command:

Take care to write the full link to the issue

Before starting to write your first commit, check out this link: Writing good commits.

Step 4. Creating a Fork and Testing Your Changes

This tutorial implies you working on your fork. To fork the repository, go to the official repository of coala/coala-bears
and click on the Fork button from the website interface. To add it locally, simply run:

’$ git remote add myfork fork_link

where my fork is the name of your fork, and fork_1ink is alink to your fork repository.

Note: It is important that you do not make your changes on the master branch. To start working on an issue, you first
need to create a new branch where you will work.

:: § git checkout -b <branchname>

Now you need to make sure your change is actually working. For this, you will need to test it locally before pushing it
to your fork, and checking it with concrete examples. The first time, you will need to install some requirements. This
can be done by executing the following command while in the root of the coala project directory.

’$ pip3 install -r test-requirements.txt -r requirements.txt

After that, you can run coala by simply typing

’$ coala

2.5. Step 3. Picking Up an Issue 125

https://coala.io/new
http://api.coala.io/en/latest/Developers/Writing_Native_Bears.html
http://coala.io/commit

coala Documentation, Release 0.11.0

into your bash. This will analyze your code and help you fix it.
See also:

Executing tests

Step 5. Sending Your Changes

Note: Before committing your changes, please check that you are indeed in a development branch created in step 4.
To check if you are in a branch, type:

$ git branch

Your current branch will have an asterisk (*) next to it. Ensure that there is no asterisk next to the master branch.

Now that you’ve fixed the issue, you’ve tested it and you think it is ready to be merged, create a commit and push it to
your fork, using:

$ git push myfork

where my fork is the name of your fork that you added at the previous step.

Note: You could also add a profile picture on your Github account, so that you can be distinguished out from the
crowd!

Step 6. Creating a Pull Request

Now that your commit has been sent to your fork, it is time to do a Pull Request. It can be done by accessing
your fork on GitHub and clicking New Pull Request.

Congratulations! You have now created your first Pull Request!

Note: Do not delete your comments on Github because it makes it hard for other developers to follow on that issue.
If necessary, edit your comment in case there is a typo or a task list to be updated. If you have to add some new
information, make a new comment.

If you know you have more work to do on this Pull Request before it is ready to be accepted, you can optionally
indicate this to other developers by starting your Pull Request title with wip (case-insensitive).

Step 7. Waiting for Review

After creating a Pull Request, your PR is open to the review process (to read more about it, have patience and it is
explained on the next step), and all you can do is wait. The best thing you can do while at this step is review other
people’s PRs. Not only will this help the maintainers with the workload, but this is one of the three core steps towards
becoming a full-norm coalaian. Never close a Pull Request unless you are told to do so.

For more information about reviewing code, check out this link.

126 Chapter 2. Welcome to the Newcomers Guide!

http://api.coala.io/en/latest/Developers/Executing_Tests.html
http://coala.io/reviewing

coala Documentation, Release 0.11.0

Note: Reviewing code helps you by watching other people’s mistakes and not making them yourself in the future!

We highly encourage you to do reviews. Don’t be afraid of doing something wrong - there will always be someone
looking over it before merging it to master.

Step 8. Review Process

After creating your Pull Request, it is under the review process. This can be deduced from the
process/pending review label. Now all you have to do is wait, or let the other developers know on Gitter
that you have published your changes.

Note: Do not tag the reviewers every time you push a change. They review PRs consistently whenever they have
time!

Now there’s two possibilities:
e your Pull Request gets accepted, and your commits will get merged into the master branch

e your Pull Request doesn’t get accepted, and therefore you will need to to modify it as per the review
comments

Note: Wait until the reviewer has already reviewed your whole Pull Request and has labeled it process/wip. Else,
if you push again and his comments disappear, it can be considered rude.

Note: You might be wondering what those CI things on your Pull Request are. For more detailed info about
them, see this page.

It’s highly unlikely that your Pull Request will be accepted on the first attempt - but don’t worry, that’s just how
it works. It helps us maintain coala clean and stable.

See also:
Review Process.

Now, if you need to modify your code, you can simply edit it again, add it and commit it using

$ git commit -a —--amend

This will edit your last commit message. If your commit message was considered fine by our reviewers, you can
simply send it again like this. If not, edit it and send it. You have successfully edited your last commit!

Note: Don’t forget! After editing your commit, you will have to push it again. This can be done using:

$ git push --force myfork

The meaning of my fork is explained here. The Pull Request will automatically update with the newest changes.

Congratulations! Your PR just got accepted! You’re awesome. Now you should tell us about your experience and go
for a low issue - they are really rewarding!

2.10. Step 8. Review Process 127

https://docs.coala.io/en/latest/Help/FAQ.html#what-are-those-things-failing-passing-on-my-pull-request
http://api.coala.io/en/latest/Developers/Review.html
http://api.coala.io/en/latest/Developers/Newcomers_Guide.html#step-4-creating-a-fork-and-testing-your-changes
https://coala.io/newform
https://coala.io/low

coala Documentation, Release 0.11.0

Note: Do not only fix a newcomer issue! It is highly recommended that you fix one newcomer issue to get familiar
with the workflow at coala and then proceed toa difficulty/low issue.

However those who are familiar with opensource can start with difficulty/low issues.

We highly encourage you to start reviewing other’s issues after you complete your newcomer issue, as reviewing helps
you to learn more about coala and python.

Note: If you need help picking up an issue, you can always ask us and we’ll help you!

If you ever have problems in finding some links maybe you can find the solution in our useful links section.

128 Chapter 2. Welcome to the Newcomers Guide!

https://coala.io/review

CHAPTER 3

coala settings

coala provides a common command-line interface for linting and fixing all your code, regardless of the programming
languages you use.

To find out what kind of analysis coala offers for the languages you use, visit http://coala.io/languages, or run:

’$ coala —--show-bears --filter-by-language C Python

To perform code analysis, simply specify the analysis routines (bears) and the files you want it to run on, for example:

spaceBear:

’$ coala —-bears SpaceConsistencyBear —--files xx.py ‘

coala can also automatically fix your code:

spacePatchBear:

’$ coala —--bears SpaceConsistencyBear —--files xx.py —-—apply-patches ‘

To run coala without user interaction, run the coala —non-interactive, coala —json and coala —format commands.

format
Required Arguments
TARGETS sections to be executed exclusively
Info
-v=""==SUPPRESS==", --version="==SUPPRESS==" show program’s version number and
exit
Mode

-C, --non-interactive run coala in non interactive mode

--ci continuous integration run, alias for ‘—non-interactive’

129

http://coala.io/languages

coala Documentation, Release 0.11.0

--json mode in which coala will display output as json

--format output results with a custom format string, e.g. “Message: {message}”;
possible placeholders: id, origin, file, line, end_line, column, end_column,
severity, severity_str, message, message_base, message_arguments, af-
fected_code, source_lines

Configuration
-c, --config configuration file to be used, defaults to .coafile
-F, --find-config find .coafile in ancestors of the working directory
-1, --no-config run without using any config file
-s, --save save used arguments to a config file to a .coafile, the given path, or at the

value of -c
--disable-caching run on all files even if unchanged
--flush-cache rebuild the file cache

--no-autoapply-warn turn off warning about patches not being auto applicable

Inputs
-b, --bears names of bears to use
-f, --files files that should be checked
-i, --ignore files that should be ignored
--limit-files filter the ‘—files‘ argument’s matches further
-d, --bear-dirs additional directories which may contain bears
Outputs
-V, --verbose alias for ‘-L DEBUG*
-L, --log-level set log output level to DEBUG/INFO/WARNING/ERROR, defaults to
INFO
Possible choices: ERROR, INFO, WARNING, DEBUG
-m, --min-severity set minimal result severity to INFO/NORMAL/MAJOR
Possible choices: INFO, NORMAL, MAJOR
-N, --no-color display output without coloring (excluding logs)
-B, --show-bears list all bears
-1, --filter-by-language filters ‘—show-bears* by the given languages
-p, --show-capabilities show what coala can fix and detect for the given languages
-D, --show-description show bear descriptions for ‘—show-bears*
--show-details show bear details for ‘—show-bears*
--log-json output logs as json along with results (must be called with —json)
-0, --output write results to the given file (must be called with —json)
-1, --relpath return relative paths for files (must be called with —json)
Miscellaneous
-S, --settings arbitrary settings in the form of section.key=value

130 Chapter 3. coala settings

coala Documentation, Release 0.11.0

-a, --apply-patches apply all patches automatically if possible
-j, --jobs number of jobs to use in parallel

-n, --n0-0rig don’t create .orig backup files before patching

131

coala Documentation, Release 0.11.0

132 Chapter 3. coala settings

CHAPTER 4

Bear Installation Tool

coala features a Bear Installation Tool that helps installing bears one by one or all of them. This tool is helpful as it
also manages to install the bears’ external dependencies.

Installation

To install the tool, simply run:

’$ pip3 install cib

Usage

To use the tool, you need to give it arguments.

To install bears, simply run cib install followed by names of bears, or by all. Therefore:

’$ cib install all

will install all the available bears, whereas

’$ cib install CPPCheckBear PEP8Bear

will install the specified bears only. cib uninstall works exactly the same way as cib install.

To see the full list of available bears, run

’$ cib show

To upgrade the already installed bears, run

’$ cib upgrade all

to upgrade all installed bears, or

’$ cib upgrade CPPCheckBear PEP8Bear

to upgrade the specified bears. However, if they are not installed, they will not be upgraded.

cib also checks for bears’ dependencies, using:

133

coala Documentation, Release 0.11.0

‘$ cib check-deps all

For more information, run

‘$ cib help

134 Chapter 4. Bear Installation Tool

CHAPTER 5

How To Write a Good Commit Message

Quick reference

Example of a good commit:

setup.py: Change bears' entrypoint

This entrypoint ensures that coala discovers
the bears correctly.

It helps not writing more functions inside
‘“coalib’ " for this.

Closes https://github.com/coala/coala/issues/5861

e setup.py: Change bears’ entrypoint: Describe the change in maximum of 50 characters.
e This entrypoint.. ..for this: Describe the reasoning of your changes in maximum of 72 characters per line.
¢ Closes https://github.com/coala/coala/issues/5861: Mention the URL of the issue it closes or fixes.

At coala we are looking heavily at the maintainability of the code.

Note: Code is more often read than written!

We need good code. In order to do that we are verifying that every change to our code (i.e. the commits) is making it
better.

What Makes a Good Commit

A good commit is atomic. It should describe one change and not more.

Why? Because we may create more bugs if we had more changes per commit.

How to Write Good Commit Messages

A commit message consists of 3 parts:

* shortlog

135

coala Documentation, Release 0.11.0

e commit body
e issue reference

Example:

setup.py: Change bears' entrypoint

This entrypoint ensures that coala discovers the bears correctly.
It helps not writing more functions inside "~ “coalib” " for this.

Closes https://github.com/coala/coala/issues/5861

Shortlog

Example:

* Maximum of 50 characters.
 Should describe the change - the action being done in the commit.
 Should have a tag and a short description separated by a colon (:)
— Tag
* The file or class or package being modified.
+* Not mandatory.
— Short Description
* Starts with a capital letter.

+ Written in imperative present tense (i.e. Add something, not Adding something or Added
something).

No trailing period.

Commit Body

Example:

This entrypoint ensures that coala discovers the bears correctly.
It helps not writing more functions inside "~ “coalib’ for this.

e Maximum of 72 chars excluding newline for each line.

» Not mandatory - but helps explain what you’re doing.

Should describe the reasoning for your changes. This is especially important for complex changes that are not
self explanatory. This is also the right place to write about related bugs.

* First person should not be used here.

136 Chapter 5. How To Write a Good Commit Message

coala Documentation, Release 0.11.0

Issue reference

Example:

5861

* Should use the Fixes keyword if your commit fixes a bug, or Closes if it adds a feature/enhancement.

¢ In some situations, e.g. bugs overcome in documents, the difference between Fixes and Closes may be very
small and subjective. If a specific issue may lead to an unintended behaviour from the user or from the program
it should be considered a bug, and should be addresed with Fixes.

¢ Should use full URL to the issue.

* There should be a single space between the Fixes or Closes and the URL.

* The issue reference will automatically add the link of the commit in the issue.

« It will also automatically close the issue when the commit is accepted into coala.

See also:

https://wiki.gnome.org/Git/CommitMessages

More Examples

Example 1 (fixed bug):

is not in
is and

Example 2 (implemented feature):

2060

Editing Commit Messages

If you have previously made a commit and update it on a later date, it is advisable to also update the commit message
accordingly.

In order to do this one can use the amend function as is described here.

5.4. Editing Commit Messages 137

https://wiki.gnome.org/Git/CommitMessages
http://api.coala.io/en/latest/Developers/Git_Basics.html#follow-up

coala Documentation, Release 0.11.0

Why Do We Need Good Commits?

An atomic commit is way easier to review. The reviewer thus will be able to review faster and find more bugs
due to the lower complexity of the change.

Atomic commits are like good objects in object oriented programming - you can split up a bigger thing into
many small objects. Reducing complexity is the key to developing good software and finding its bug before
they occur.

Good commit messages make it easy to check at a glance what happened in a time range.

It is way easier to revert single changes without side effects. Reverting multiple commits at a time is easy,
reverting a part of a commit is not.

git blame will be much more effective. It is the best documentation you can get. The older your code is, the
more documentation it has. The better the commit messages are, the better is your hidden documentation. Your
commit messages document the reason for every single change you did to any line.

git bisect will be much more effective. If you bisect through atomic commits to find the commit which
caused a bug, you should be able to identify the real cause of the bug fastly. Good commit messages and
atomicity of commits are key to that ability.

138

Chapter 5. How To Write a Good Commit Message

CHAPTER 6

Codestyle for coala

coala follows the PEPS codestyle with a maximum line length of 80 characters including newline. Invoke coala to
let it correct your code automatically.

Additional Style Guidelines

Documentation Comments

A documentation comment consists of 2 parts split by a newline:
* the description of what it does

* alist of the parameters it takes in and their descriptions, the return value it gives out and the exceptions it may
raise

Nothing should be written on the first and last line where the docstring begins and ends, and each message in the
documentation comment must end with a full-stop. Also, the description of all arguments, return value and errors
raised shall be on a newline, indented by 4 spaces.

Example:

def area

If the description for a param or other keywords exceeds 1 line, continue it in the next. Make sure that the second line
is aligned below the first line.

139

https://www.python.org/dev/peps/pep-0008/

coala Documentation, Release 0.11.0

Type Checking

If you want to assure that parameters have a certain type, you can use the enforce_signature decorator and
simply annotate your function with the allowed types:

concatenate_strings str str str

This will raise a TypeError if a, b or ¢ are not strings and c is not None.

Line Continuation
Since line continuation is not covered by PEPS coding style guide you are supposed to keep your multiple-line lists,
dicts, tuples, function definitions, function calls, and any such structures either:

* stay on one line

* span multiple lines that list one parameter/item each

140 Chapter 6. Codestyle for coala

CHAPTER 7

Git Tutorial

This tutorial will help you understand how git works and how to use git to submit your commit on Github.

Note: This tutorial is about using Git in bash/cmd, which we highly recommend, as it’s cleaner. Github is a totally
different thing, it is the web interface or app.

How to install Git

First step is installing Git. Supposing you are on a Debian-based distribution, this will do:

’$ sudo apt-get install git-all

For installing Git on a Mac OS system, you can use the homebrew package manager as follows:

’$ brew install git

Getting Started with coala

First of all, you have to fork the repository you are going to contribute to. This will basically give you a clone of
the repository to your own repository. You can do this by opening this to fork the coala repository or this to fork the
coala-bears repository and then clicking ‘Fork’ in the upper right corner.

Grabbing coala on your local machine

Now you should clone the repository to your local machine so that you can have access to all the code locally and start
fixing issues! To do this, you can use these to clone the coala/coala-bears repositories:

’$ git clone -o upstream https://github.com/coala/coala

or

’$ git clone -o upstream https://github.com/coala/coala-bears

141

https://brew.sh/
https://github.com/coala/coala
https://github.com/coala/coala-bears
https://github.com/coala/coala-bears

coala Documentation, Release 0.11.0

Note: —o upstream sets the remote name of the original coala/coala-bears repositories as upstream.
upstream is just a name we used for simplicity. You can name it however you want.

Don’t worry if you’re not familiar with what remotes are. The following section will explain more about remotes.

Now you have all your code on your local machine!

Getting to work

First let’s talk about remotes. To communicate with the outside world, git uses what are called remotes. These are
repositories other than the one on your local disk which you can push your changes into (so that other people can see
them) or pull from (so that you can get others changes). Now you should add a remote of your fork to your local
machine so that you can pull and push your commits. This can be simply done by using the command:

$ git remote add myfork <your_fork_ link>

Note: myfork is just a name we used for simplicity. You can name it however you want.

Creating a new branch

To start working on an issue, you first need to create a new branch where you will work.

’$ git checkout -b branchname

Note: checkout will switch to the newly created branch.

—b will create a new branch if the branch doesn’t already exist.

Checking your work

After the issue is fixed and you have tested it (tests are very important! never submit a change that isn’t tested), you
should check your progress. Type:

’$ git status

It will give you an idea about what files are currently modified.

Note: Tip: If there’s something you don’t find, you can always use:
$ git grep "syntax"

This will search through the whole repository and show you the files that contain the syntax.

See also:

For more information about tests, check this link.

142 Chapter 7. Git Tutorial

coala Documentation, Release 0.11.0

Adding the files and commiting

Now you can add your files/folders to the current commit:

’$ git add <file/folder_name>

Do this until you have added all the files needed for your commit. Then type:

’$ git commit

This will lead you to a text editor. Now you need to write your commit message. We are very strict about writing
commit messages as they help us maintain coala clean and stable. Commit messages usually consists of three main
parts. They should have a newline between them.

¢ The header

99,99

The header should have the name of the file that you have made the change on, followed by ”:”, a space, and
then a short title that explains the change made.

Example: .gitignore: Add a new Constants variable
e The body

The body should have a short paragraph that briefly describes the change that was made, and the reason why
this change was needed in imperative. Its maximum length is 50 characters.

¢ The issue that is being fixed
This part will usually have “Fixes <issue_link>", so the issue gets referenced on GitHub.
See also:
For more information about writing commit messages, check this link.

Now that your message is written, you will have to save the file. Press escape to exit insert mode, and save the file (in
Vim that is being done by pressing shift + Z twice).

Run coala

Now you can check if your commit messages and code formattings conform with the community guidelines. If
something goes wrong, coala will let you know. The continuous integration (CI) will fail if coala reports errors which
means that we cannot proceed with merging your fix/pull request.

’$ coala

Pushing the commit

Now you will need to push the commit to the fork. All you have to do is:

’$ git push myfork

It will most likely ask for your login credentials from GitHub. Type them in, and your commit will be pushed online.

7.7. Adding the files and commiting 143

http://coala.io/commit

coala Documentation, Release 0.11.0

Creating a Pull Request

Now you would like to get your commit into the actual master branch. Making your changes available to all future
users of the project. For this, you will have to create a Pull Request. To do this, you will have to go on GitHub, on
your fork page. You should change the branch to the one you have worked on and submitted the commit on. Now you
can create a Pull Request by clicking the New Pull Request button in the pull request tab.

Congratulations! You have just created your first Pull Request! You are awesome!

Note: If you see any error like 1 commit ahead of the master branch you need to sync your local fork
with the remote repository before sending a pull request.

More information regarding syncing can be found here.

Follow-up

Now after you have created the Pull Request, there are two possibilities:

 your PR will get accepted, and your commit will get merged into the master branch - sadly, this rarely happens
on the first Pull Request

* your PR will be rejected. There are 2 cases when a PR is rejected:
— Test fails
— Reviewer wants something changed (This also causes gitmate to fail)

It’s highly unlikely that your PR will be accepted on the first attempt - but don’t worry that’s just how it works. It helps
us maintain coala clean and stable.

See also:
Review Process.

Now if you need to modify your code, you can simply edit it again, add it and commit it using

$ git commit -a —--amend

This will edit your last commit message. If your commit message was considered fine by our reviewers, you can
simply send it again like this. If not, edit it and send it. Now you have successfully edited your last commit!

If you need to rebase, or want to edit an older commit from your branch, we have an amazing tutorial that you can
watch to understand how it works.

Rebasing

As people work on coala new commits will be added. This will result in your local fork going out of sync with the
remote repository. To sync your changes with the remote repository run the following commands in the desired branch:

Note: This assumes that the remote upstream is the original coala repository at https://github.com/coala/coala (or
other, like coala/coala-bears, etc.), not your fork.

If you have followed the steps outlined in this guide and cloned the original coala repository, upst ream should refer
to it. You can proceed to the following section without worry.

144 Chapter 7. Git Tutorial

http://coala.io/git#rebasing
https://asciinema.org/a/78683
https://asciinema.org/a/78683
https://github.com/coala/coala

coala Documentation, Release 0.11.0

If you’re unsure about this, run git remote -v to check which remote points to the original repository and use
that instead of upst ream in the following section.

$ git fetch upstream
$ git rebase upstream/master

This will fetch the commits from the remote repository and will merge it into the branch where you are currently
working, and move all of the local commits that are ahead of the rebased branch to the top of the history on that
branch.

Note: After following these instructions when you try to push to remote you may get fast-forwarding error. If that is
the case, then you will have to force push since you are attempting to rewrite the git commit history. To do that append
the ——force argument in the push command:

$ git push myfork --force

Warning: Never force-push on the master branch, or any branch not owned by you.

To verify whether you have rebased correctly, go to the web page of the branch in your fork. If it says your branch
isn commits behind coala:master (or whichever repo you are contributing to), then you haven’t correctly
rebased yet. Otherwise, you’re good to go!

Squashing your commits

It’s possible that you have more than one commit and you want them to be squashed into a single commit. You can
take your series of commits and squash them down into a single commit with the interactive rebasing tool. To squash
your commits run the following command:

$ git rebase -i master

Note: master is the SHA1 hash of the commit before which you want to squash all the commits and make sure that
rebase is done onto master branch.

An editor will be fired up with all the commits in your current branch (ignoring merge commits), which come after the
given commit. Keep the first one as “pick” and on the second and subsequent commits with “squash”. After saving,
another editor will be fired up with all the messages of commits which you want to squash. Clean up all the messages
and add a new message to be displayed for the single commit.

Common Git Issues

Sometimes, you use git add-A and add files you didn’t want to your push (often after rebasing) and push it to the
remote. Here ,is a short outline of, how can you remove (or revert changes in) particular files from your commit even
after pushing to remote.

In your local repo, to revert the file to the state before the previous commit run the following:

$ git checkout HEAD” /path/to/file

Now , after reverting the file(s) update your last commit, by running :

7.13. Squashing your commits 145

coala Documentation, Release 0.11.0

’$ git commit -a —-amend

To apply these changes to the remote you need to force update the branch :

’$ git push -f myfork

Note: The procedure outlined above helps roll back changes by one commit only. ‘myfork’ mentioned above is your
forked repository, where you push your commits.

The git checkout <revision sha> path/to/file command offers you more flexibility in reverting the
changes in a file, done even from earlier than the last commit. By replacing the HEAD" by the revision number of the
particular HEAD commit, you can refer to the required revision of the file.

Might sound a little intimidating, but don’t worry, an example has been provided for you. First you can check the
commit’s revision number, where the file was revised by running the following command:

’$ git log /path/to/file

The revision number might look like 3cdc61015724£9965575ba954c8cd4232c8b42e4 Now, to revert the
file to that revision, run the command:

’$ git checkout 3cdc61015724£9965575ba954c8cd4232¢c8b42e4 /path/to/file.txt

Now, after the file gets reverted back to the required revision, commit the changes and (force)push to the remote.

If at any stage you are confused, or have an issue, do not close your Pull Request. Instead, contact us on gitter so that
we can help you resolve your problem.

Useful Git commands

This section will briefly explain some other Git commands you will most likely use and will really make your work
easier.

’$ git config

The git config command lets you configure your Git installation (or an individual repository) from the command
line. This command can define everything from user info to preferences to the behavior of a repository.

’$ git log

The git log command displays committed snapshots. It lets you list the project history, filter it, and search for
specific changes. While git status lets you inspect the working directory and the staging area, git log only operates on
the committed history.

’$ git push --force myfork

While we normally use git push myfork to push your commit to your fork, after further editing and work on
your commit, you will need to use the ——force parameter to your push to automatically update your Pull Request.

’$ git reset --hard

Reset the staging area and the working directory to match the most recent commit. In addition to unstaging changes,
the ——hard flag tells Git to overwrite all changes in the working directory, too. Put another way: this obliterates all
uncommitted changes, so make sure you really want to throw away your local developments before using it.

146 Chapter 7. Git Tutorial

coala Documentation, Release 0.11.0

$ git clean

The git clean command removes untracked files from your working directory. This is really more of a convenience
command, since it’s trivial to see which files are untracked with git status and remove them manually. Like an ordinary
rm command, git clean is not undoable, so make sure you really want to delete the untracked files before you run
it.

’$ git checkout <branch>

The git checkout command is used to switch to another branch in the repository. Here <branch> is the name of
the branch you want to switch to.

’$ git rebase

Rebasing is the process of moving a branch to a new base commit. From a content perspective, rebasing really is just
moving a branch from one commit to another. But internally, Git accomplishes this by creating new commits and
applying them to the specified base—it’s literally rewriting your project history. It’s very important to understand that,
even though the branch looks the same, it’s composed of entirely new commits.

$ git rebase -i

Running git rebase with the -i flag begins an interactive rebasing session. Instead of blindly moving all of the
commits to the new base, interactive rebasing gives you the opportunity to alter individual commits in the process. This
lets you clean up history by removing, splitting, and altering an existing series of commits. It’s like git commit
——amend on steroids. Usageis $ git rebase -i <base>. Rebase the current branch onto <base>, but use an
interactive rebasing session. This opens an editor where you can enter commands (described below) for each commit
to be rebased. These commands determine how individual commits will be transferred to the new base. You can also
reorder the commit listing to change the order of the commits themselves.

If you would like more information/commands, please use your favourite search engine to look for it. Git is widely
used throughout the world and there are many good tutorials and git related Q& A threads out there.

7.15. Useful Git commands 147

coala Documentation, Release 0.11.0

148 Chapter 7. Git Tutorial

CHAPTER 8

Reviewing

This document is a guide to coala’s review process.

Am | Good Enough to Do Code Review?

Yes, if you already fixed a newcomer issue.

Reviewing can help you understand the other side of the table and learn more about coala and python. When reviewing
you will get to know new people, more code and it ultimately helps you to become a better coder than you could do
on your own.

You can totally help us review source code. Especially try to review source code of others and share what you have
learnt with them. You can use acks and unacks like everyone else and cobot even allows you to set PRs to WIP.
Check the section below for more information.

Generally follow this process:

1. Check if the change is helping us. Sometimes people propose changes that are only helpful for specific usecases
but may break others. The concept has to be good. Consider engaging in a discussion on gitter if you are unsure!

2. Check for automatic builds. Give the contributor hints on how he can resolve them.
3. Review the actual code. Suggest improvements and simplifications.

Be sure to not value quantity over quality! Be transparent and polite: Explain why something has to be changed
and don’t just “command” the coder to obey guidelines for no reason. Reviewing always involves saying someone that
his code isn’t right, be very careful not to appear rude even if you don’t mean it! Bad reviews will scare away other
contributors.

Note: Commits should have a good size, every logical change should be one commit. If there are multiple changes,
those make multiple commits. Don’t propose to squash commits without a reason!

When reviewing, try to be thorough: if you don’t find any issues with a pull request, you likely missed something.

If you don’t find any issues with a Pull Request and acknowledge it, a senior member will look over it and perform the
merge if everything is good.

Manual Review Process

The review process for coala is as follows:

149

coala Documentation, Release 0.11.0

1. Anyone can submit commits for review. These are submitted via Pull Requests on Github.
2. The Pull Request will be labeled with a process label:
* pending review the commit has just been pushed and is awaiting review

* wip the Pull Request has been marked as a Work in Progress by the reviewers and has comments
on it regarding how the commits shall be changed

e approved the commits have been reviewed by the developers and they are ready to be merged into the
master branch

If you don’t have write access to coala, you can change the labels using cobot mark wip <URL> or cobot
mark pending <URL>.

3. The developers will acknowledge the commits by writing
* ack commit_SHA or commit_SHA is ready, in case the commit is ready, or

e unack commit_SHA or commit_SHA needs work in case it is not ready yet and needs
some more work or

* reack commit_SHA incase the commit was acknowledged before, was rebased without con-
flicts and the rebase did not introduce logical problems.

Note: Only one acknowledgment is needed per commiti.e ack commit_SHA.

4. If the commits are not linearly mergeable into master, rebase and go to step one.

5. All commits are acknowledged and fit linearly onto master. All continuous integration services (as described
below) pass. A maintainer may leave the @rultor merge command to get the PR merged automatically.

Automated Review Process

It is only allowed to merge a pull request into master if all required GitHub states are green. This includes the
GitMate review as well as the Continuous Integration systems.

Continuous integration is always done for the last commit on a pull request but should ideally pass for every commit.

For the Reviewers

* Generated code is not intended to be reviewed. Instead rather try to verify that the generation was done right.
The commit message should expose that.

* Every commit is reviewed independently from the other commits.

e Tests should pass for each commit. If you suspect that tests might not pass and a commit is not checked by
continuous integration, try running the tests locally.

¢ Check the surroundings. In many cases people forget to remove the import when removing the use of something
or similar things. It is usually good to take a look at the whole file to see if it’s still consistent.

* Check the commit message.
» Take alook at continuous integration results in the end even if they pass.

» Coverage must not fall.

150 Chapter 8. Reviewing

coala Documentation, Release 0.11.0

* Be sure to assure that the tests cover all corner cases and validate the behaviour well. E.g. for bear tests just
testing for a good and bad file is not sufficient.

As you perform your review of each commit, please make comments on the relevant lines of code in the GitHub pull
request. After performing your review, please comment on the pull request directly as follows:

e If any commit passed review, make a comment that begins with “ack”, “reack”, or “ready” (all case-insensitive)
and contains at least the first 6 characters of each passing commit hash delimited by spaces, commas, or forward
slashes (the commit URLs from GitHub satisfy the commit hash requirements).

e If any commit failed to pass review, make a comment that begins with “unack” or “needs work™ (all case-
insensitive) and contains at least the first 6 characters of each passing commit hash delimited by spaces, commas,
or forward slashes (the commit URLs from GitHub satisfy the commit hash requirements).

Note: GitMate only separates by spaces and commas. If you copy and paste the SHAs they sometimes contain tabs
or other whitespace, be sure to remove those!

Example:

unack l4e3ael 823e363 342700d

If you have a large number of commits to ack, you can easily generate a list with git log —-oneline
master. . and write a message like this example:

reack

a8cdeb5b Docs: Clarify that users may have pyvenv

5a05253 Docs: Change Developer Tutorials —-> Resources
c3acb62 Docs: Create a set of notes for development setup

Rebased on top of changes that are not affected by documentation
changes.

8.4. For the Reviewers 151

coala Documentation, Release 0.11.0

152 Chapter 8. Reviewing

CHAPTER 9

Development Setup Notes

The following are some useful notes for setting up an environment to work on coala.

Virtualenv

We highly recommend installing coala in a virtualenv for development. This will allow you to have a contained
environment in which to modify coala, separate from any other installation of coala that you may not want to break.
Here we will be showing how to have a virtualenv using venv and virtualenv. We recommend using venv as it
is part of the standard library and requires no extra installation. However, you can use whichever you find suitable to
yourself.

Using venv

* Make sure to have Python 3 installed in your local machine.

¢ Setting up virtualenv with venv :

$ cd working_dir # move into the dir where you want to create coala-venv
$ python3 -m venv coala-venv

This creates an isolated Python 3 environment called coala-venv

in your current directory.

To activate the environment type:

$ source coala-venv/bin/activate

To exit the environment simply type:

(coala-venv)$ deactivate

¢ Now you can activate the environment and start the next part.

Using virtualenv

¢ Install virtualenv using pip :

$ pip3 install virtualenv

¢ Create the virtualenv :

$ cd working_dir # move into the dir where you want to create coala-venv
$ virtualenv coala-venv

153

https://coala.io/devsetup#installing-from-git

coala Documentation, Release 0.11.0

NOTE: If you have both Python 3 and Python 2 installed try this command it creates an isolated Python 3 environment
called coala-venv in your current directory, as coala only works for Python >= 3.4

$ virtualenv coala-venv -p $(which python3)

¢ Run coala-venv :

$ source coala-venv/bin/activate
(coala-venv)$ deactivate # to exit the environment

 After this, you can start installing from git.

Repositories

If you are interested in contributing to coala, we recommend that you read our newcomers’ guide to familiarize yourself
with our workflow, and perhaps with GitHub itself.

You will most likely need to work only in the coala or coala-bears repository. The former is the core of coala,
and the latter contains the set of standard bears. You can fork and clone the repositories from:

https://github.com/coala/coala

https://github.com/coala/coala-bears

Installing from Git

We recommend first installing the latest development snapshot of coala’s master branch from and all of its dependen-
cies with pip using

git clone https://github.com/coala/coala
cd coala

(coala-venv) $
(coala-venv) $
(coala-venv)$ pip3 install -e

(coala-venv)$ cd -

(coala-venv)$ git clone https://github.com/coala/coala-bears
(coala-venv)$ cd coala-bears

() $

coala-venv pip3 install -e

Then you can install a repository-backed version of the repository you would like to modify using

(coala-venv)$ pip3 install -e <path/to/clone>

You will then be able to edit the repository and have the changes take effect in your virtualenv immediately. You will
also be able to use pip to manage your installation of the package should you need to install from a different source in
the future.

Building Documentation

You should run this command before trying to build the documentation:

’(coala—venv)$ pip3 install -r docs-requirements.txt

Once you have done so, you can build the documentation by entering the docs directory and running make. The
documentation on the coala website is in the coala (not coala-bears) repository.

154 Chapter 9. Development Setup Notes

https://coala.io/devsetup#installing-from-git
http://api.coala.io/en/latest/Developers/Newcomers_Guide.html
https://github.com/coala/coala
https://github.com/coala/coala-bears

cHAPTER 10

Adding CI to your Fork

This tutorial will help you add the CI tools, that are used in coala repositories to test the code, to your forked repository.
We recommend you to add all the CI and test everything in your own repository before doing a PR.

Before we start adding CI it’s important you have a GitHub account and know how to fork repositories. In case you
don’t, you should have a look into our Git Tutorial.

Travis CI

Travis is used to confirm that the tools install and build properly. It also runs the tests and confirms all test cases
pass and have 100% coverage. These are examples of travis CI checks used in coala and coala-bears repository:
https://travis-ci.org/coala/coala/ and https://travis-ci.org/coala/coala-bears/. To run identical CI checks in travis you
will need to configure your forked repository and to do that follow the steps mentioned below.

1. Go to travis-ci.org and create an account. You can simply use your GitHub account for that.

2. On the top left corner you will see a “+” icon beside “My Repositories”. Click on that, and it will take you to
your travis-ci profile.

3. Sync your account with github by clicking on the top right button saying “Sync account”.
4. Find the forked coala repository in the list and enable builds for it.

5. Travis CI requires a .travis.yml file containing the settings and build instructions, e.g coala’s .travis.yml. Your
forked repository from coala will already have that file.

6. Watch the builds at travis-ci.org/<username>/<repository>/builds.

AppVeyor CI

To find out how coala acts in Microsoft Windows, we use App Veyor which runs test and build commands in a Microsoft
Windows box. Here are examples of CI build in AppVeyor : https://ci.appveyor.com/project/coala/coala/ and https:
/[ci.appveyor.com/project/coala/coala-bears/. Now to add an indentical Appveyor CI to your forked repository, follow
the following instructions.

1. Go to ci.appveyor.com and login using your GitHub account.

2. Click on “New Project” and find forked repository from the repositories listed under your username.
3. On the right side, you will see an “Add” button, click on it and it will add it to your projects.
4

. AppVeyor CI requires appvyor.yml file that should have the settings and instructions for windows, e.g coala’s
appveyor.yml. Your forked repository already has that file.

155

https://coala.io/gitbasics
https://travis-ci.org/coala/coala/
https://travis-ci.org/coala/coala-bears/
https://travis-ci.org/
https://github.com/coala/coala/blob/master/.travis.yml
https://ci.appveyor.com/project/coala/coala/
https://ci.appveyor.com/project/coala/coala-bears/
https://ci.appveyor.com/project/coala/coala-bears/
http://ci.appveyor.com
https://github.com/coala/coala/blob/master/.misc/appveyor.yml
https://github.com/coala/coala/blob/master/.misc/appveyor.yml

coala Documentation, Release 0.11.0

S.

In case it has a different name or not in the root directory you have to configure it in the settings which can be
found at ci.appveyor.com/project/<username>/<repository>/settings. For coala’s repository the appveyor.yml
file is inside the .misc directory. So you have to go to Settings and under “Custom configuration .yml file
name”, enter .misc/appveyor.yml. For coala-bears’s repository the the appveyor.yml file is in the .ci
directory. So you have to enter . ci/appveyor.yml. If you have forked a different repository, enter the right
.yml file path for that.

In coala, the appveyor.yml sets the setting to only build from the master branch, however in your fork you may
want it to build other branches as well. You can do that by configuring “Branches to Build” in Settings, so there
will be no need to change the file for that.

From now on appveyor will run the builds for every commit you push, which you can watch at
ci.appveyor.com/project/<username>/<repository>. You can also start a build by yourself by clicking on ‘“New
Build”

Circle CI

Circle CI is also used for the same purpose as travis, to check everything installs and builds properly, and also to run
the tests. Here are examples of checks in circle CI : https://circleci.com/gh/coala/coala/ and https://circleci.com/gh/
coala/coala-bears/. To add these CI builds to your forked repositories follow the instructions here.

1.
2.

Go to circleci.com and sign up using your GitHub account.

After signing up it will take you to the dashboard which lists the project that already use circle and which don’t.
By default it selects all the repositories, but if you want you can deselect them and only choose the forked
repository.

Then click the “Follow and Build” button.

In project settings go to Adjust Parallelism under Build Settings and enable a second container by clicking on
the box with “2x”.

Using a circle.yml file it runs the builds. e.g coala’s circle.yml. Your forked repository from coala will already
have that file.

You can then watch the builds at circleci.com/gh/<username>/<repository>.

In project settings go to Build Environments under Build Settings. You will see by default the OS used for builds
is Trusty one, however we recommend using Precise as its faster.

Codecov

We require 100% test coverage, and to test that we use codecov.io which takes data from all other CI to confirm its
coverage. Here are two example reports from coala and coala-bears repository : https://codecov.io/gh/coala/coala/
and https://codecov.io/gh/coala/coala-bears/. Once you follow the instructions here, you will have identical reports for
your forked repository.

1.
2.
3.

Go to codecov.io and sign up using your GitHub account.
Click on your username, and that will take you to a page where the repositories that use codecov are listed.

Click on “Add new repository” and it will take you to a page that lists all your repositories. Choose the forked
repository for which you want to enable codecov.

Like other CI, this also has a configuration file, .codecov.yml file which your forked repository will already have.
e.g coala’s .codecov.yml The CI uploads the test reports to codecov, which then creates an overall coverage
report.

156

Chapter 10. Adding ClI to your Fork

https://circleci.com/gh/coala/coala/
https://circleci.com/gh/coala/coala-bears/
https://circleci.com/gh/coala/coala-bears/
https://circleci.com
https://github.com/coala/coala/blob/master/circle.yml
https://codecov.io
https://codecov.io/gh/coala/coala/
https://codecov.io/gh/coala/coala-bears/
https://codecov.io
https://github.com/coala/coala/blob/master/.codecov.yml

coala Documentation, Release 0.11.0

5. You can watch the reports at codecov.io/gh/<username>/<repository>

10.4. Codecov 157

coala Documentation, Release 0.11.0

158 Chapter 10. Adding Cl to your Fork

CHAPTER 11

Guide to Writing a Native Bear

Welcome. This document presents information on how to write a bear for coala. It assumes you know how to use
coala. If not, please read our main tutorial

The sample sources for this tutorial lie at our coala-tutorial repository, go clone it with:

All paths and commands given here are meant to be executed from the root directory of the coala-tutorial repository.

Note: If you want to wrap an already existing tool, please refer to this tutorial instead.

What is a bear?

A bear is meant to do some analysis on source code. The source code will be provided by coala so the bear doesn’t
have to care where it comes from or where it goes.

There are two kinds of bears:

* LocalBears, which only perform analysis on each file itself

* GlobalBears, which are project wide, like the GitCommitBear
A bear can communicate with the user via two ways:

* Via log messages

* Via results

Log messages will be logged according to the users settings and are usually used if something goes wrong. However
you can use debug for providing development related debug information since it will not be shown to the user by
default. If error/failure messages are used, the bear is expected not to continue analysis.

A Hello World Bear

Below is the code given for a simple bear that sends a debug message for each file:

from coalib.bears.localBear import

159

https://docs.coala.io/en/latest/Users/Tutorial.html

coala Documentation, Release 0.11.0

class HelloWorldBear
def run(self

self

This bear is stored at . /bears/HelloWorldBear.py

In order to let coala execute this bear you need to let coala know where to find it. We can do that with the —-d
(-—bear-dirs) argument:

coala —-f src/*x.c —-d bears -b HelloWorldBear -L DEBUG —--flush-cache

Note: The given bear directories must not have any glob expressions in them. Any character that could be interpreted
as a part of a glob expression will be escaped. Please use comma separated values to give several such directories
instead. Do not forget to flush the cache (by adding the argument ——f1ush-cache when running coala) if you run
a new bear on a file which has been previously analyzed (by coala).

You should now see the debug message for our sample file.

The Bear class also supports warn and err.

Communicating with the User

Now we can send messages through the queue, we can do the real work. Let’s say:
* We want some information from the user (e.g. the tab width if we rely on indentation).

* We’ve got some useful information for the user and want to show it to them. This might be some issue with their
code or just an information like the number of lines.

So let’s extend our HelloWorldBear a bit, I’ve named the new bear with the creative name CommunicationBear:

from coalib.bears.LocalBear import

class CommunicationBear

def run(self

str

self

type-type

yield self

Try executing it:

160 Chapter 11. Guide to Writing a Native Bear

coala Documentation, Release 0.11.0

Hey, we’ll get asked for the user_input! Wasn’t that easy? Go ahead, enter something and observe the output.
So, what did coala do here?

First, coala looked at the parameters of the run method and found that we need some value named user_input. Then
it parsed our documentation comment and found a description for the parameter which was shown to us to help us
choose the right value. After the needed values are provided, coala converts us the value into a string because we’ve
provided the st r annotation for this parameter. If no annotation is given or the value isn’t convertible into the desired
data type, you will get a coalib.settings.Setting.Setting.

Your docstring can also be used to tell the user what exactly your bear does.

Try executing

This will show the user a bunch of information related to the bear like: - A description of what the bear does - The
sections which uses it - The settings it uses (optional and required)

Note: The bears are not yet installed. We still have to specify the bear directory using —d or ——bear-dirs flag.

Install locally Written Bears
Let’s say that we wrote a file NewBear.py that contain our NewBear and we want to run it locally. To install our
NewBear:

¢ Move the NewBear . py to our clone of coala-bears in coala-bear/bears/<some_directory>.

» Update all bears from source with:

Our NewBear is installed.

Try Executing:

|

This shows a list of all installed bears. We can find our NewBear in the list.

What Data Types are Supported?

The Setting does support some very basic types:

* String (str)

Float (f1oat)

e Int (int)

* Boolean (bool, will accept values like t rue, yes, yeah, no, nope, false)
e List of strings (1ist, values will be split by comma)

* Dict of strings (dict, values will be split by comma and colon)

11.3. Communicating with the User 161

coala Documentation, Release 0.11.0

If you need another type, you can write the conversion function yourself and use this function as the annotation (if you
cannot convert value, be sure to throw TypeError or ValueError). We’ve provided a few advanced conversions
for you:

* coalib.settings.Setting.path, converts to an absolute file path relative to the file/command where
the setting was set

* coalib.settings.Setting.path_list, converts to a list of absolute file paths relative to the
file/command where the setting was set

* coalib.settings.Setting.typed_list (typ), converts to a list and applies the given conversion
(typ) to each element.

* coalib.settings.Setting.typed_ordered_dict (key_type,value_type,default),
converts to a dict while applying the key_type conversion to all keys, the value_type conversion to all
values and uses the default value for all unset keys. Use t yped_dict if the order is irrelevant for you.

Results

In the end we’ve got a result. If a file is provided, coala will show the file, if a line is provided, coala will also show a
few lines before the affecting line. There are a few parameters to the Result constructor, so you can e.g. create a result
that proposes a code change to the user. If the user likes it, coala will apply it automatically - you don’t need to care.

Your function needs to return an iterable of Result objects: that means you can either return a 1ist of Result
objects or simply yield them and write the method as a generator.

Note: We are currently planning to simplify Bears for bear writers and us. In order to make your Bear future proof,
we recommend writing your method in generator style.

Don’t worry: in order to migrate your Bears to our new API, you will likely only need to change two lines of code. For
more information about how bears will look in the future, please read up on https://github.com/coala/coala/issues/725
or ask us on https://coala.io/chat.

Bears Depending on Other Bears

So we’ve got a result, but what if we need our Bear to depend on results from a different Bear?

Well coala has an efficient dependency management system that would run the other Bear before your Bear and get its
results for you. All you need to do is to tell coala which Bear(s) you want to run before your Bear.

So let’s see how you could tell coala which Bears to run before yours:

from coalib.bears.LocalBear import
from bears.somePathTo.OtherBear import

class DependentBear

def run(self

As you can see we have a BEAR _DEPS set which contains a list of bears we wish to depend on. In this case it is a set
with 1 item: “OtherBear”.

162 Chapter 11. Guide to Writing a Native Bear

https://github.com/coala/coala/issues/725
https://coala.io/chat

coala Documentation, Release 0.11.0

Note: The BEAR_DEPS set must have classes of the bear itself, not the name as a string.

coala gets the BEAR_DEPS before executing the DependentBear and runs all the Bears in there first.

After running these bears, coala gives all the results returned by the Bears in the dependency_results
dictionary, which has the Bear’s name as a key and a list of results as the value. E.g. in this
case, we would have dependency_results == {'OtherBear' : [list containing results
of OtherBear]]}.

Note: dependency_results is a keyword here and it cannot be called by any other name.

Hidden Results

Apart from regular Results, coala provides HiddenResults, which are used to share data between Bears as well as
giving results which are not shown to the user. This feature is specifically for Bears that are dependencies of other
Bears, and do not want to return Results which would be displayed when the bear is run.

Let’s see how we can use HiddenResults in our Bear:

from coalib.bears.LocalBear import
from coalib.results.HiddenResult import

class OtherBear

def run(self
yield self

Here we see that this Bear (unlike normal Bears) yields a HiddenResult instead of a Result. The first parameter
in HiddenResult should be the instance of the Bear that yields this result (in this case se1f), and second argument
should be the content we want to transfer between the Bears. Here we use a list of strings as content but it can be any
object.

More Configuration Options

coala provides metadata to further configure your bear according to your needs. Here is the list of all the metadata you
can supply:

* LANGUAGES
* REQUIREMENTS
* INCLUDE _LOCAL_FILES

CAN_DETECT and CAN_FIX

BEAR_DEPS

e Other Metadata

11.6. Hidden Results 163

coala Documentation, Release 0.11.0

LANGUAGES

To indicate which languages your bear supports, you need to give it a set of strings as a value:

SomeBear

REQUIREMENTS

To indicate the requirements of the bear, assign REQUIREMENTS a set with instances of subclass of
PackageRequirement such as:

* PipRequirement

¢ NpmRequirement

* CondaRequirement

¢ DistributionRequirement
* GemRequirement

* GoRequirement

¢ JuliaRequirement

* RscriptRequirement

SomeBear

To specify multiple requirements you can use the multiple method. This can receive both tuples of strings, in case you
want a specific version, or a simple string, in case you want the latest version to be specified.

SomeBear

INCLUDE_LOCAL_FILES

If your bear needs to include local files, then specify it by giving strings containing file paths, relative to the file
containing the bear, to the INCLUDE_LOCAL_FILES.

SomeBear

CAN_DETECT and CAN_FIX

To easily keep track of what a bear can do, you can set the value of CAN_FIX and CAN_DETECT sets.

164 Chapter 11. Guide to Writing a Native Bear

coala Documentation, Release 0.11.0

SomeBear

To view a full list of possible values, check this list:
* Syntax
» Formatting
* Security
* Complexity
o Smell
* Unused Code
* Redundancy
* Variable Misuse
e Spelling
* Memory Leak
e Documentation
* Duplication
* Commented Code
e Grammar
* Missing Import
e Unreachable Code
* Undefined Element
* Code Simplification

Specifying something to CAN_FIX makes it obvious that it can be detected too, so it may be omitted from
CAN_DETECT

BEAR_DEPS

BEAR_DEPS contains bear classes that are to be executed before this bear gets executed. The results of these bears
will then be passed to the run method as a dict via the dependency_results argument. The dict will have the name of
the Bear as key and the list of its results as value:

SomeOtherBear

For more detail see Bears Depending on Other Bears.

Other Metadata

Other metadata such as AUTHORS, AUTHORS_EMAILS, MAINTAINERS, MAINTAINERS_EMAILS, LICENSE,
ASCIINEMA_URL, SEE_MORE can be used as follows:

11.7. More Configuration Options 165

coala Documentation, Release 0.11.0

SomeBear

166

Chapter 11. Guide to Writing a Native Bear

CHAPTER 12

Linter Bears

Welcome. This tutorial aims to show you how to use the @1 inter decorator in order to integrate linters in your bears.

Note: If you are planning to create a bear that does static code analysis without wrapping a tool, please refer to this
link instead.

This tutorial takes you through the process of writing a local linter Bear. If you want to write a global linter Bear, for
a tool that does not run once for each file, but only once for the whole project, you can still go through the steps and
then read about the differences of global linter Bears at Global Linter Bears.

Why is This Useful?

A lot of programming languages already have linters implemented, so if your project uses a language that does not
already have a linter Bear you might need to implement it on your own. Don’t worry, it’s easy!

What do we Need?

First of all, we need the linter executable that we are going to use. In this tutorial we will build the PylintTutorialBear
so we need Pylint, a common linter for Python. It can be found here. Since it is a python package we can go ahead
and install it with

’$ pip3 install pylint

Writing the Bear

To write a linter bear, we need to create a class that interfaces with our linter-bear infrastructure, which is provided via
the @1inter decorator.

from coalib.bearlib.abstractions.Linter import

class PylintTutorialBear
pass

167

https://www.pylint.org/

coala Documentation, Release 0.11.0

As you can see pylint is already provided as an executable name which gets invoked on the files you are going to
lint. This is a mandatory argument for the decorator.

The linter class is only capable of processing one file at a time, for this purpose pylint or the external tool needs to
be invoked every time with the appropriate parameters. This is done inside create_arguments,

PylintTutorialBear

create_arguments

create_arguments accepts three parameters:
e filename: The absolute path to the file that gets processed.
» file: The contents of the file to process, given as a list of lines (including the return character).

e config_file: The absolute path to a config file to use. If no config file is used, this parameter is None.
Processing of the config file is left to the Bear’s implementation of the method.

You can use these parameters to construct the command line arguments. The linter expects from you to return an
argument sequence here. A tuple is preferred. We will do this soon for PylintTutorialBear.

Note: create_arguments doesn’t have to be a static method. In this case you also need to prepend self to the
parameters in the signature. Some functionality of @1inter is only available inside an instance, like logging.

create_arguments (self
self

So which are the exact command line arguments we need to provide? It depends on the output format of the linter.
The @1inter decorator is capable of handling different output formats:

* regex: This parses issue messages yielded by the underlying executable.
* corrected: Auto-generates results from a fixed/corrected file provided by the tool.
e unified-diff: This auto-generates results from a unified-diff output provided by the executable.

In this tutorial we are going to use the regex output format. But before we continue with modifying our bear, we
need to figure out how exactly output from Pylint looks like so we can parse it accordingly.

We get some promising output when invoking Pylint with

$ pylint --msg-template="L{line}C{column}: {msg_id} - {msg}" —--reports=n

Sample output looks like this:

16/12

This is something we can parse easily with a regex. So let’s implement everything we’ve found out so far:

168 Chapter 12. Linter Bears

coala Documentation, Release 0.11.0

PylintTutorialBear

create_arguments

As you can see, the output_regex parameter consists of named groups. These are important to construct a mean-
ingful result that contains the information that is printed out.

For the exact list of named groups @1 inter recognizes, see the API documentation.
For more info generally on regexes, see Python re module.

Let’s brush up our output_regex a bit to use even more information:

Now we use the issue identification as the origin so we are able to deactivate single rules via ignore statements inside
code.

This class is already fully functional and allows to parse issues yielded by Pylint!

Using Severities

coala uses three types of severities that categorize the importance of a result:
* INFO
« NORMAL
« MAJOR

which are defined in coalib.results.RESULT_SEVERITY. Pylint output contains severity information we can
use:

The letter before the error code is the severity. In order to make use of the severity, we need to define it inside the
output_regex parameter using the named group severity:

So we want to take up the severities denoted by the letters W, F, E, C, R or I. In order to use this severity
value, we will first have to provide a map that takes the matched severity letter and maps it to a severity value of
coalib.results.RESULT_SEVERITY so coala understands it. This is possible via the severity_map pa-
rameter of @linter:

12.4. Using Severities 169

https://api.coala.io/en/latest/
https://docs.python.org/3/library/re.html

coala Documentation, Release 0.11.0

from coalib.results.RESULT_SEVERITY import

coalib.results.RESULT_SEVERITY contains three different values, Info, Warning and Error you can
use.

We can test our bear like this

$ coala —--bear-dirs=. —--bears=PylintTutorialBear --files=sample.py

Note: In order for the above command to work we should have 2 files in our current dir:
PylintTutorialBear.py and our sample.py. Naming is very important in coala. coala will look for bears
by their filename and display them based on their classname.

Normally, providing a severity-map is not needed, as coala has a default severity-map which recognizes many common
words used for severities. Check out the API documentation for keywords supported!

Suggest Corrections Using the corrected and unified-diff Out-
put Formats

These output formats are very simple to use and don’t require further setup from your side inside the bear:

or

If your underlying tool generates a corrected file or a unified-diff of the corrections, the class automatically generates
patches for the changes made and yields results accordingly.

Adding Settings to our Bear

If we run

’$ pylint —-help

We can see that there is a ——rcfile option which lets us specify a configuration file for Pylint. Let’s add that
functionality to our bear.

170 Chapter 12. Linter Bears

coala Documentation, Release 0.11.0

import os

from coalib.bearlib.abstractions.Linter import
from coalib.results.RESULT_SEVERITY import

class PylintTutorialBear

def create_arguments
str
return

Just adding the needed parameter to the create_arguments signature suffices, like you would do for other bears
inside run! Additional parameters are automatically queried from the coafile. Let’s also add some documentation
together with the metadata attributes:

class PylintTutorialBear

def create_arguments
str

Note: The documentation of the param is parsed by coala and it will be used as help to the user for that specific
setting.

12.6. Adding Settings to our Bear 171

coala Documentation, Release 0.11.0

Finished Bear

Well done, you made it this far! Now you should have built a fully functional Python linter Bear. If you followed the
code from this tutorial it should look something like this

import os

from coalib.bearlib.abstractions.lLinter import
from coalib.results.RESULT_SEVERITY import

class PylintTutorialBear

def create_arguments
str

return

Adding Metadata Attributes

Now we need to add some more precious information to our bear. This helps by giving more information about each
bear and also helps some functions gather information by using these values. Our bear now looks like:

import os

from coalib.bearlib.abstractions.Linter import

from dependency_management.requirements.PipRequirement import
from coalib.results.RESULT_SEVERITY import

172 Chapter 12. Linter Bears

coala Documentation, Release 0.11.0

PylintTutorialBear

create_arguments

str
Running and Testing our Bear
By running
’$ coala —--bear-dirs=. —--bears=PylintTutorialBear -B

We can see that our Bear setting is documented properly. To use coala with our Bear on sample.py we run

’$ coala —-bear-dirs=. —--bears=PylintTutorialBear --files=sample.py

To use our pylint_rcfile setting we can do

12.9. Running and Testing our Bear

173

coala Documentation, Release 0.11.0

$ coala —--bear-dirs=. --bears=PythonTutorialBear \
> =S pylint_rcfile=my_rcfile --files=sample.py

You now know how to write a linter Bear and also how to use it in your project.

Congratulations!

Global Linter Bears

Some linting tools do not run on file level, i.e. once for each file, but on project level. They might check some
properties of the directory structure or only check one specific file like the setup.py.

For these tools we need a GlobalBear and we can also use @linter to give us one, by passing the parameter
global_bear=True:

from coalib.bearlib.abstractions.Linter import

True

class SomeToolBear

def create_arguments
pass

The create_arguments method takes no filename and file in this case since there is no file context. You
can still make coala aware of the file an issue was detected in, by using the filename named group in your
output_regex if relevant to the wrapped tool.

Where to Find More...

If you need more information about the @1inter decorator, refer to the API documentation.

174 Chapter 12. Linter Bears

http://api.coala.io/en/latest/coalib.bearlib.abstractions.html#module-coalib.bearlib.abstractions.Linter

CHAPTER 13

Linter Bears - Advanced Feature Reference

Often linters are no easy tools. To squeeze out the last bit of functionality and efficiency, @1inter provides some
advanced features ready for use.

Supplying Configuration Files with generate_config

Sometimes tools require a configuration file to run. @linter supports that easily by overriding
generate_config().

class MyBear

def generate_config

return

The string returned by this method is written into a temporary file before invoking create_arguments (). If you
return None, no configuration file is generated.

The path of the temporary configuration file can be accessed inside create_arguments () viathe config_file
parameter:

class MyBear

def generate_config

return

def create_arguments
return

Note: By default, no configuration file is generated.

175

coala Documentation, Release 0.11.0

Custom Processing Functions with process_output

Inside @1inter only a few output formats are supported. And they can’t be combined for different output streams.
To specify an own output parsing/processing behaviour, process_output can be overridden.

class MyBear
def process_output (self
pass

The output variable contains the string output from the executable. Depending on how you use the use_stdout
and use_stderr parameters from @1inter, output can contain either a tuple or a plain string: If use_stdout
and use_stderr are both True, a tuple is placed with (stdout, stderr). If only one of them is True, a string
is passed (containing the output stream chosen).

Inside process_output you need to yield results according to the executable output. It is also pos-
sible to combine the built-in capabilities. There are several functions accessible with the naming scheme
process_output_<output-format>.

* process_output_regex: Extracts results using a regex.

* process_output_corrected: Extracts results (with patches) by using a corrected version of the file
processed.

True
True
class MyBear

def process_output (self

yield from self

yield from self

JSON output is also very common:

class MyBear
def process_output (self
for in
yield self

Additional Prerequisite Check

@linter supports doing an additional executable check before running the bear, together with the normal one (check-
ing if the executable exists). For example, this is useful to test for the existence of external modules (like Java modules).

To enable this additional check with your commands, use the prerequisite_check_command parameter of
@linter.

176 Chapter 13. Linter Bears - Advanced Feature Reference

coala Documentation, Release 0.11.0

MyBear

If the default error message does not suit you, you can also supply prerequisite_check_fail _message
together with prerequisite_check_command.

MyBear

13.3. Additional Prerequisite Check 177

coala Documentation, Release 0.11.0

178 Chapter 13. Linter Bears - Advanced Feature Reference

CHAPTER 14

External Bears

Welcome. This tutorial will teach you how to use the @external_bear_wrap decorator in order to write Bears in
languages other than Python.

Note: This tutorial assumes that you already know the basics. If you are new, please refer to the Writing Native Bears
section.

If you are planning to create a bear that uses an already existing tool (aka linter), please refer to the Linter Bears
section.

Why is This Useful?

coala is a great language independent static analysis tool, where users can write their own static analysis routines.

Enabling users to write external bears means that they can write their own static analysis routine in their favourite
language.

How Does This Work?

By using the @external_bear_wrap decorator you will have all the necessary data sent to your external exe-
cutable (filename, lines, settings) as a JSON string via stdin. Afterwards, the analysis takes place in your executable
that can be written in literally any language. In the end, you will have to provide the Results in a JSON string via
stdout.

In this tutorial, we will go through 2 examples where we create a very simple bear. The first example will use a
compiled language, C++, that creates a standalone binary whilst in the second example we will take a look at JS that
needs node in order to run out of the browser.

External Bear Generation Tool

If you really do not want to write any Python code, there is a tool here, coala-bears—-create, that will create the
wrapper for you. We will be using

’$ coala-bears-create -ext

in order to generate the wrapper for the bear.

179

https://gitlab.com/coala/coala-bear-management

coala Documentation, Release 0.11.0

Writing a Bear in C++

The bear that will be created with this tutorial will check whether there is any coala spelled with a capital C since that
is a horrible mistake for one to make.

1.
2.

Create a new directory and make it your current working directory.

Run coala-bears-create as mentioned above in order to create the wrapper for our C++ bear. Answer
the first question with a path to your created directory (since it should be the current one you can choose the
default value and just hit Enter).

. The most important questions are the ones regarding the executable name and the bear name. Use

coalaCheckBear for the bear name and coalaCheck_cpp for the executable name.

The rest of the questions are not important (languages, developer name and contact info, license, etc) to the
tutorial and you can go with the defaults. When you are prompted about sett ings answer no (default). After
the script is finished running there should be 2 files in your current directory: coalaCheckBear.py (the
wrapper) and coalaCheckBearTest.py.

. This tutorial will not focus on testing so ignore the second file for now. The wrapper should look similar to the

code block presented below. Some code has been cleaned for convenience of explanation.

Note: The LICENSE specified applies only to the python code. You can license your executable however you see fit.

import os

from coalib.bearlib.abstractions.ExternalBearWrap import

class coalaCheckBear

def create_arguments
return

6. Since the input will be a JSON string some kind of JSON class is needed. nlohmann’s JSON library (https:

7.

//github.com/nlohmann/json) is a great choice because it is easy to integrate and is used in this tutorial.

Create coalaCheck. cpp and start by testing the input. The best thing about nlohmann’s JSON library is that
you can parse JSON directly from stdin like this:

180

Chapter 14. External Bears

https://github.com/nlohmann/json
https://github.com/nlohmann/json

coala Documentation, Release 0.11.0

int

8. Create aMakefile. The JSON library requires C++11 so a sample Makefile would look like this:

11

9. Compile and test the binary by giving it a JSON string. It should print the JSON string back at stdout.

10. Read about the JSON Spec that the input uses (7he JSON Spec). The filename is found in in ["filename"]
and the list of lines is found in in["file"].

11. Create a result adding function, also an init function proves quite useful for initializing the output json.

int int int

()}

14.4. Writing a Bear in C++ 181

coala Documentation, Release 0.11.0

int

Note: The C++ operators and syntax are not well suited for JSON manipulation but nlohmann’s JSON lib makes it

as easy as possible.

12. Tterate over the lines and check for "coala™ with an uppercase "C". Use string‘s £ind function like so:

int

int

int

182

Chapter 14. External Bears

coala Documentation, Release 0.11.0

int

in

int 0
for in in

while

return 0

13. After building the executable it has to be added to the PATH env variable. It is possible to modify the wrapper
and give it the full path. Add the current directory to the PATH like so:

’$ export PATH=S$PATH:SPWD

The last step is to test if everything is working properly. This is the testfile used in this tutorial (testfile).

14. Execute the Bear by running:

’$ coala -d . -b coalaCheckBear —-f testfile

Note: If you have ran coala over a file more than once without modifying it, coala will try to cache it. In order to
avoid such behavior add ——f1lush-cache at the end of the command.

Writing a Bear With Javascript and Node

This part of the tutorial will demonstrate how to make an External Bear that uses a script that needs another binary to
run (e.g. python, bash, node).

1. Run coala-bears—create -ext butsupply node as the executable name.

Note: This tutorial uses node v6.2.2. It should work with older versions too but we suggest that you update.

When another binary is needed to run the source code, the create_argument s method comes in handy.

2. Add the source code file as an argument to the create_arguments method (so that the command becomes
node coalaCheck. js).

14.5. Writing a Bear With Javascript and Node 183

https://raw.githubusercontent.com/Redridge/coalaCheckBear-cpp/master/testfile

coala Documentation, Release 0.11.0

The create_arguments method returns a tuple so if only one argument is added then a comma has to be used at
the end (e.g. (one_item,)).

Note: The LICENSE specified applies only to the python code. You can license your executable however you see fit.

import os

from coalib.bearlib.abstractions.ExternalBearWrap import

class coalaCheckBear

def create_arguments
return

3. Create coalaCheck. js and add basic I/O handling.

var input = "";

console.log = (msg) => {
process.stdout.write (" ${msg}\n’);
i

process.stdin.setEncoding ('utf8"');

process.stdin.on('readable', () => {
var chunk = process.stdin.read();
if (chunk !== null) {
input += chunk;

)i

process.stdin.on('end', () => {
input = JSON.parse (input) ;
console.log (JSON.stringify (input));
1)

4. The I/O can be tested by running node coalaCheck. js and supplying a valid JSON string in the stdin.

5. Add the init and the add result functions.

184 Chapter 14. External Bears

coala Documentation, Release 0.11.0

input

input

input

6. Iterate over the lines and check for "coala™" spelled with a capital "C". The final source should look like this:

var input = "";
var out = {};
var origin;

console.log = (msg) => {
process.stdout .write (" ${msg}\n’);
bi

init_results = (bear_name) => {
origin = bear_name;
out ["results"] = [];
}i
add_result = (message, line, column, severity) => {
var result = {
"origin": origin,
"message": message,
"affected_code": [{
"file": input["filename"],
"start": {
"column": column,
"file": input["filename"],
"line": line
b
"end": {
"column": column+6,
"file": input["filename"],
"line": line
}
Pl
"severity": severity

14.5. Writing a Bear With Javascript and Node 185

coala Documentation, Release 0.11.0

}i
out ["results"].push(result)

}i

process.stdin.setEncoding ('utf8');

process.stdin.on ('readable', () => {
var chunk = process.stdin.read();
if (chunk !== null) {

input += chunk;
b

process.stdin.on('end', () => {
input = JSON.parse (input) ;
init_results ("coalaCheckBear");
for (i in input["file"]) {
var line = input["file"][i];
var found = line.indexOf ("Coala");
while (found != -1) {
add_result ("Did you mean 'coala'?", parselnt (i)+1l, found+l, 2);
found = line.indexOf ("Coala", found+1)

}
console.log (JSON.stringify (out));
)i

In order to run this Bear there is no need to add the source code to the path because the binary being run is node.
Although there is a problem: the argument supplied will be looked up only in the current directory. To fix this you
can add the full path of the . js file in the argument list. In this case just run the bear from the same directory as
coalaCheck. js. The code for this example can be found here.

The JSON Spec

coala will send you data in a JSON string via stdin and the executable has to provide a JSON string via stdout. The
specs are the following:

* input JSON spec

Tree Type | Description

filename | str the name of the file being analysed
file list file contents as a list of lines
settings | obj settings as key:value pairs

* output JSON spec

186 Chapter 14. External Bears

https://github.com/Redridge/coalaCheckBear-js

coala Documentation, Release 0.11.0

Tree Type | Description
results list list of results
origin str usually the name of the bear
message str message to be displayed to the user
affected_code | list contains SourceRange objects
file str the name of the file
start obj start position of affected code
file str the name of the file
line int line number
column int column number
end obj end position of affected code
file str the name of the file
line int line number
column int column number
severity int severity of the result (0-2)
debug_msg str message to be shown in DEBUG log
additional_info | str additional info to be displayed
Note: The output JSON spec is the same as the one that coala —-json uses. If you ever get lost you can run

coala —--json over a file and check the results.

14.6. The JSON Spec

187

coala Documentation, Release 0.11.0

188 Chapter 14. External Bears

CHAPTER 15

How to use LocalBearTestHelper to test your bears

coala has an awesome testing framework to write tests for bears with ease.
You can use the following to test your bears:

* LocalBearTestHelper.check_validity

* LocalBearTestHelper.check_results

e verify_ local_bears

Understanding through examples

Let us understand how to write tests for TooManyLinesBear in some_dir. TooManyLinesBear checks if a
file has less than or equal to max_number_of_lines lines. max_number_of_lines by defaultis 10.

from coalib.results.Result import
from coalib.bears.LocalBear import

class TooManyLinesBear

def run

int=10

if(len
yield self

EXAMPLE 1 using verify_local_bear

from bears.some_dir.TooManyLinesBear import

from coalib.testing.lLocalBearTestHelper import

189

coala Documentation, Release 0.11.0

good_file is afile which your bear considers as non-style-violating and a bad_ fi le is one which has at least one
error/warning/info. We need to write a good_fi 1e which has less than or equal to max_number_of_lines lines
and a bad_f1ile which has more than max_number_of_1lines lines and feed them to verify_local_bear
as input along with your bear (TooManyLinesBear in this case) and a few additional arguments.

Note: good_file and bad_file are sequences justlike file. A f£ile is a sequence of an input file.

EXAMPLE 2 using LocalBearTestHelper.check_validity

from queue import
from bears.some_dir.TooManyLinesBear import

from coalib.testing.lLocalBearTestHelper import

from coalib.settings.Section import
from coalib.settings.Setting import

class TooManyLinesBearTest

def setUp(self
self
self
self self

def test_valid(self
self self

def test_invalid(self
self self False

Note: bad_file hereis same as bad_file in the above example.

check_validity asserts if your bear yields any results for a particular check with a list of strings. First
a Section and your Bear (in this case TooManyLinesBear) is setUp. Now your Section consists by de-
fault Settings. You can append any Setting depending on your test. Validate a check by passing your bear,
lines to check as parameters (pass a few other parameters if necessary) to check_validity. The method
self.check_validity (self.uut, ["import os"]) asserts if your bear self.uut yields a result when
a list of strings ["import os"] is passed.

EXAMPLE 3 using LocalBearTestHelper.check_results

from queue import

from bears.some_dir.TooManyLinesBear import
from coalib.testing.LocalBearTestHelper import
from coalib.results.Result import

from coalib.settings.Section import

class TooManyLinesBearTest

190 Chapter 15. How to use LocalBearTestHelper to test your bears

coala Documentation, Release 0.11.0

setUp (self
self

test_run(self

self
self

int-20

check_results asserts if your bear results match the actual results on execution on CLI. Just like the above
example, we need to setUp a Section and your Bear with some Settings. check_results validates your results by
giving your local bear, lines to check and expected results as input. check_results asserts if your bear’s results
on checking the £i1le match with Results.from_values(...).

A Final Note

LocalBearTestHelper is written to ease off testing for bears. Make sure that your tests have 100% coverage and
zero redundancy. Use check_results as much as possible to test your bears.

15.2. A Final Note 191

coala Documentation, Release 0.11.0

192 Chapter 15. How to use LocalBearTestHelper to test your bears

CHAPTER 16

Introduction

Tests are an essential element to check if your written components in coala really do work like they should. Even when
you think “I really looked over my code, no need for tests” you are wrong! Bugs introduced when not writing tests
are often the most horrible ones, they have the characteristic to be undiscoverable (or only discoverable after dozens
of hours of searching). Try to test as much as possible! The more tests you write the more you can be sure you did
everything correctly. Especially if someone else modifies your component, they can be sure with your tests that they
don’t introduce a bug. Keep these points in your mind when you’re writing a test:

* 100% test-coverage
* zero redundancy

A patch will not be accepted unless there is a 100% branch coverage. Redundant tests are a waste of effort because
you are testing the same piece of code again and again, which is unnecessary.

Actually Writing a Test

So how do you implement a test in coala? First up, tests are placed into the coala-bears/tests (if you want
to write a test for a bear) or coala/tests (if you test a component written for the coalib) directory. They are also
written in Python (version 3) and get automatically executed by running:

$ py.test

There’s only one constraint: The name of the test file has to end with Test . py (for example MyCustomTest . py,
but not MyCustomTestSuite.py).

Note: If py.test seems to give errors, try running python3 -m pytest instead.

Note: Often you don’t want to run all available tests. To run your specific one, type (in the coala root folder):

$ py.test -k <your-test>

You can even give partial names or queries like “not MyCustomTest” to not run a specific test. More information can
be got with py.test -h

Coming to the test file structure. Every test script starts with your imports. According to the coala code style
(and pep8 style) we first do system imports (like re or subprocessing), followed by first party imports (like
coalib.result.Result).

193

coala Documentation, Release 0.11.0

Then the actual test suite class follows, that contains the tests. Each test suite is made up of test cases, where the test
suite checks the overall functionality of your component by invoking each test case.

The basic declaration for a test suite class is as follows:

YourComponentTest

You should derive your test suite from unittest.TestCase to have access to the setUp () and tearDown ()
functions (covered in section below: ‘‘setUp()‘‘ and ‘‘tearDown()‘¢) and also to the assertion functions.

Now to the test cases: To implement a test case, just declare a class member function without parameters, starting with
test_. Easy, isn’t it?

YourComponentTest

test_casel (self

not_testing(self

But how do you actually test if your component is correct? For that purpose you have asserts. Asserts check whether a
condition is fulfilled and pass the result to the overall test-suite-invoking-instance, that manages all tests in coala. The
result is processed and you get a message if something went wrong in your test.

See also:
unittest assert-methods Documentation on the assert functions from python’s inbuilt unittest.

So an example test that succeeds would be:

unittest

YourComponentTest

test_casel (self

Note: Tests in coala are evaluated against their coverage, means how many statements will be executed from your
component when invoking your test cases. A branch coverage of 100% is needed for any commit in order to be pushed
to master - please ask us on gitter if you need help raising your coverage!

The branch coverage can be measured locally with the py.test —--cov command.
See also:
Module Executing Tests Documentation of running Tests with coverage

As our coverage is measured across builds against several python versions (we need version specific branches here
and there) you will not get the full coverage locally! Simply make a pull request to get the coverage measured

194 Chapter 16. Introduction

https://docs.python.org/3/library/unittest.html#assert-methods

coala Documentation, Release 0.11.0

automatically.

If some code is untestable, you need to mark your component code with # pragma: no cover. Important:
Provide a reason why your code is untestable. Code coverage is measured using python 3.4 and 3.5 on linux.

def untestable_func

pass

setUp () and tearDown ()

Often you reuse components or need to make an inital setup for your tests. For that purpose the function setUp ()
exists. Just declare it inside your test suite and it is invoked automatically once at test suite startup:

class YourComponentTest
def setUp(self

pass

The opposite from this is the tearDown () function. It gets invoked when the test suite finished running all test
cases. Declare it like setUp () before:

class YourComponentTest
def tearDown (self

pass

Kickstart

This section contains a concluding and simple example that you can use as a kickstart for test-writing.

Put the code under the desired folder inside test s, modify it to let it test your stuff and run the test from the coala
root folder py . test.

import sys
import unittest

class YourTest
def setUp (self

pass

def tearDown (self

16.2. setUp () and tearDown () 195

coala Documentation, Release 0.11.0

test_casel (self

Glossary

e yut - Unit Under Test

196 Chapter 16. Introduction

CHAPTER 17

Writing Documentation

This document gives a short introduction on how to write documentation for the coala project.

Documentation is written in reStructuredText and rendered by Read the Docs to our lovely users. You can view the
current user documentation on http://docs.coala.io.

To familiarize yourself with the reStructuredText syntax please see this guide.

After getting the coala source code (see Installation Instructions), you can start hacking on existent documentation
files. They reside in a separate repository that can be found here.

If you want to add new pages, you need to alter the index.rst file in the root of the repository. Please read
http://www.sphinx-doc.org/en/stable/markup/toctree.html#toctree-directive for an explanation of the syntax.

You should run this command before trying to build the documentation:

You can test the documentation locally through simply running make html in the root directory. This generates
_build\html\index.html that you can view on your browser.

197

https://readthedocs.io
http://docs.coala.io
http://www.sphinx-doc.org/en/latest/rest.html
https://docs.coala.io/en/latest/Users/Install.html
https://github.com/coala/documentation
http://www.sphinx-doc.org/en/stable/markup/toctree.html#toctree-directive

coala Documentation, Release 0.11.0

198 Chapter 17. Writing Documentation

CHAPTER 18

Testing

You can help us testing coala in several ways.

Executing our Tests

coala has a big test suite. It is meant to work on every platform on every PC. If you just execute our tests you are doing
us a favor.

To run tests, You first need to install some dependencies. This can be done by following these steps:

If you have not already, clone the repository (or a fork of it) by running:

$ git clone https://github.com/coala/coala

Navigate to the directory where coala is located.

Next you need to install some requirements. This can be done by executing the following command while in the root
of the coala project directory.

’$ pip3 install -r test-requirements.txt -r requirements.txt

You can then execute our tests with

’$ py.test

Note: If py.test seems to give errors, try running python3 -m pytest instead.

and report any errors you get!

To run our tests, you can also use python3 setup.py test

Note: If you need to customize test running, you can get more options about allowing skipped tests, getting code
coverage displayed or omitting/selecting tests using py . test directly.

$ py.test —--help

Note: You will not get a test coverage of 100% - the coverage on the website is merged for several python versions.

199

https://github.com/coala/coala

coala Documentation, Release 0.11.0

Using test coverage

To get coverage information, you can run:

’$ py.test —-cov

You can view the coverage report as html by running:

’$ py.test --cov —--cov-report html

The html report will be saved . htmlreport inside the coala repository.

200 Chapter 18. Testing

CHAPTER 19

Useful Links

The purpose of this document is to gather links that coala developers usually use throughout their work.

If you ever encounter a link that helped you or that is not a part of the document and should be, feel free to suggest it
by creating an issue in our issue tracker.

Git-Links

¢ Git Tutorial

* coala’s Git Tutorial

* Commit message guidelines
* coala Commits

* How to rebase

* Rebase Concept

 Short Rebase Tutorial

* coala Git Repository

Python-Links

* Code Style
* coala Code Style
* Python Tutorial

¢ Shorter Tutorial Version

rST-Links

e Basic rST

* Syntax

201

https://github.com/coala/coala/issues/new
https://try.github.io/levels/1/challenges/1
https://wiki.gnome.org/Git/CommitMessages
https://asciinema.org/a/78683
http://jeffkreeftmeijer.com/2010/the-magical-and-not-harmful-rebase/
http://stackoverflow.com/questions/7244321/how-do-i-update-a-github-forked-repository
https://github.com/coala/coala
https://www.python.org/dev/peps/pep-0008/
https://docs.python.org/3/tutorial/
https://www.stavros.io/tutorials/python/
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/stable/markup/toctree.html#toctree-directive

coala Documentation, Release 0.11.0

coala-Links

¢ coala Shortlinks

* Install coala

* coala Issues

¢ coala Tutorial

» coala Chat

e coala Newcomers’ Guide

e coala Review Process

202 Chapter 19. Useful Links

http://docs.coala.io/en/latest/Users/Install.html
https://github.com/coala/coala/issues
http://docs.coala.io/en/latest/Users/Tutorial.html
https://gitter.im/coala/coala

Python Module Index

C

coalib,
coalib.
coalib.
coalib.

coalib.
coalib.

coalib.
coalib.
coalib
coalib.
coalib.
coalib
coalib.

122

bearlib,
bearlib.
bearlib.

3

bearlib.
bearlib.

7
bearlib

47

abstractions,7
abstractions.ExternalBearfiegpiP-bearlib.
35

abstractions.Linter,3

abstractions.SectionCreatable,

.aspects,
bearlib.
.bearlib.
bearlib.
bearlib.
.bearlib.
bearlib.

aspects
aspects

aspects.
.meta, 20
.Metadata, 8

aspects
aspects

27

.base, 19
.collections, 19

docs, 20

coalib.bearlib.
34

coalib.bearlib.
39

coalib.bearlib.
37
coalib.bearlib.
38
coalib.bearlib.
coalib.bearlib.
43
coalib.bearlib.
coalib.bearlib.
coalib.bearlib.

languages.definitions.Vala,

languages.documentation,
languages.documentation.DocstyleDef
languages.documentation.Documentatic
languages.documentation.Documentati

.Language, 39
.LanguageDefinition,

languages
languages

naming_conventions, 44
spacing, 47
spacing.SpacingHelper,

coalib
coalib.
coalib.
coalib
coalib.
34
coalib.
34
coalib.
34
coalib.
34
coalib.
34
coalib.
34
bearlib
34

coalib.

coalib.
34
coalib.
34

coalib.bearlib.

34

.bearlib.
bearlib.
bearlib.
.bearlib.
bearlib.
bearlib.
bearlib.
bearlib.

bearlib.

bearlib.

bearlib.

bearlib.

aspects
aspects
aspects.
aspects.
languages,
languages.
languages
languages.
languages.

languages.

languages.

.languages.

languages.
languages.

languages.

.Redundancy, 14
.root, 20
Spelling, 19
taste, 26

44

definitions,

.definitions.

definitions.

definitions

definitions.

definitions

definitions.

definitions

definitions

definitions

coalib
coalib
coalib
coalib
coalib
coalib
coalib
cppcoalib

coalib

C»

.CShgeplib

coalib
Cssgoalib
coalib

.Golsaglib

coalib
Javgoalib
coalib

coalib

.PytGealib

coalib

.Unk&8&hID

coalib
coalib

46

.bears, 54

.bears.Bear, 49
.bears.BEAR_KIND, 49
.bears.GlobalBear, 53
.bears.LocalBear, 54
.bears.meta, 54

.coala, 121

.coala_ci, 121
.coala_delete_orig, 121
.coala_format, 121
.coala_json, 121
.coala_main, 121
.coala_modes, 122
.collecting, 58
.collecting.Collectors, 54
.collecting.Dependencies, 56
.collecting.Importers, 57

. Jav&8atiprcore, 67

.Bear, 58
.core.CircularDependencyError, 62
.Core, 62
DependencyTracker, 63
.core.Graphs, 66

.misc, 73

.Core

.Core
.Core.

203

coala Documentation, Release 0.11.0

coalib.misc.BuildManPage, 67 coalib.results.result_actions.ResultAction,
coalib.misc.Caching, 68 96
coalib.misc.CachingUtilities, 69 coalib.results.result_actions.ShowPatchAction,
coalib.misc.Compatibility, 71 97
coalib.misc.Constants, 71 coalib.results.RESULT_SEVERITY, 103
coalib.misc.DictUtilities, 71 coalib.results.ResultFilter, 105
coalib.misc.Enum, 71 coalib.results.SourcePosition, 106
coalib.misc.Exceptions, 71 coalib.results.SourceRange, 106
coalib.misc.Shell, 72 coalib.results.TextPosition, 107
coalib.output, 81 coalib.results.TextRange, 108
coalib.output.ConfWriter, 75 coalib.settings, 119
coalib.output.ConsoleInteraction, 75 coalib.settings.Annotations, 109
coalib.output.Interactions, 81 coalib.settings.ConfigurationGathering,
coalib.output.JSONEncoder, 81 109
coalib.output.Logging, 81 coalib.settings.DocstringMetadata, 112
coalib.output.printers, 75 coalib.settings.FunctionMetadata, 113
coalib.output.printers.ListLogPrinter, coalib.settings.Section, 115

74 coalib.settings.SectionFilling, 117
coalib.output.printers.LOG_LEVEL, 73 coalib.settings.Setting, 118
coalib.output.printers.LogPrinter, 74 coalib.testing, 121
coalib.parsing, 85 coalib.testing.BearTestHelper, 119
coalib.parsing.CliParsing, 82 coalib.testing.LocalBearTestHelper, 119

coalib.parsing.ConfParser, 83
coalib.parsing.DefaultArgParser, 83
coalib.parsing.Globbing, 83
coalib.parsing.LineParser, 85
coalib.processes, %4
coalib.processes.BearRunning, 86
coalib.processes.communication, 86
coalib.processes.communication.LogMessage,
85
coalib.processes.CONTROL_ELEMENT, 90
coalib.processes.LogPrinterThread, 90
coalib.processes.Processing, 90
coalib.results, 108
coalib.results.AbsolutePosition, 98
coalib.results.Diff, 98
coalib.results.HiddenResult, 103
coalib.results.LineDiff, 103
coalib.results.Result, 103
coalib.results.result_actions, 98
coalib.results.result_actions.ApplyPatchAction,
95
coalib.results.result_actions.IgnoreResultAction,
95
coalib.results.result_actions.OpenEditorAction,
95
coalib.results.result_actions.PrintAspectAction,
96
coalib.results.result_actions.PrintDebugMessageAction,
96
coalib.results.result_actions.PrintMoreInfoAction,
96

204 Python Module Index

Index

A apply() (coalib.results.result_actions.ShowPatchAction.ShowPatchAction
AbsolutePosition (class in method), 97

coalib.results. AbsolutePosition), 98 apply_from_section() (coalib.results.result_actions.ResultAction.ResultActi
acquire_actions_and_apply() (in module meth(?d), 96 '

coalib.output.Consolelnteraction), 75 ApplyPatchAction (class n
acquire_settings() (in module coalib.results.result_actions. ApplyPatchAction),

coalib.output.Consolelnteraction), 76 95)
add() (coalib.core.DependencyTracker.Dependency Tracker are_dependencies_resolved

method), 64 (coalib.core.DependencyTracker.DependencyTracker
add_after (coalib.results.LineDiff.LineDiff attribute), 103 attribute), 64
add_deprecated_param() (coalib.settings.FunctionMetadata. Pl HOHMM AR L (coalib.bears. Bear.Bear attribute), 51

method), 113 ASCIINEMA_URL (coalib.core.Bear.Bear attribute), 59
add_line() (coalib.results Diff. Diff method), 98 ask_for_action_and_apply() (in module
add_lines() (coalib.results.Diff. Diff method), 99 coalib.output.Consolelnteraction), 76
add_or_create_setting() (coalib.settings.Section.Section aspectbase (class in coalib.bearlib.aspects), 3

method), 115 aspectbase (class in coalib.bearlib.aspects. base) 19
affected_code() (coalib.results.Diff. Diff method), 99 aspectclass (class i n coal%b.bearl%b.aspects), 33
affected_source() (coalib.results.SourceRamge.SourceRangeaSpeCtC]‘?lss (class in coalib.bearlib.aspects.meta), 20

method), 106 aspectlist (class in coalib.bearlib.aspects.collections), 19
all (coalib.bearlib.languages. Language.LanguageUberMeta aspects (coalib.bears.meta.bearclass attribute), 54

attribute), 42 aspectsYEAH (class in coalib.bearlib.aspects.Spelling),
analyze() (coalib.core.Bear.Bear method), 60 19

append() (coalib.settings.Section.Section method), 115 aspectTypeError, 20, 34
append_to_sections() (in module coalib.settings.Section), assemble() (coalib.bearlib.languages.documentation.DocumentationComme

117 method), 37

apply() (coalib.results.Result.Result method), 103 assert_aspect() (in module coalib.bearlib.aspects.meta),

apply() (coalib.results.result_actions.ApplyPatchAction. ApplyPatchAthon
method), 95 assert_supported_version() (in module coalib), 122

apply() (coalib.results.result_actions.IgnoreResultAction.Iglﬁﬂ’gﬁﬁg‘%ﬁtA@t‘i’é}ﬂb'bearhb']anguages~La“guage~Language
method), 95 attribute), 41

apply() (coalib.results.result_actions.OpenEditorAction. Opeﬁ]‘jﬁfﬁ%ﬁéﬁoahb bears.Bear.Bear attribute), 51
method), 95 AUTHORS (coalib.core.Bear.Bear attribute), 59

apply() (coalib.results.result_actions.PrintAspectAction. PrlnﬁQFE@MKEMAILS (coalib.bears.Bear.Bear attribute),
method), 96

apply() (coalib.results.result_actions. PrlntDebugMessageAcMTﬁfHWL‘s%géwk%core Bear.Bear attribute),
method), 96 ‘

apply() (coalib.results.result_actions.PrintMoreInfoAction. P?Hfm&ﬂ%}%%{i& (in module
method), 96 coalib.processes.Processing), 90

apply() (coalib.results.result_actions.ResultAction. ResultAcgn

method), 96
BackgroundMessageStyle (class in

205

coala Documentation, Release 0.11.0

coalib.output.Consolelnteraction), 75
BackgroundSourceRangeStyle (class in
coalib.output.Consolelnteraction), 75
basics_match() (in module coalib.results.ResultFilter),

105
Bear (class in coalib.bears.Bear), 49
Bear (class in coalib.core.Bear), 58
BEAR_DEPS (coalib.bears.Bear.Bear attribute), 51
BEAR_DEPS (coalib.core.Bear.Bear attribute), 60
bear_dirs() (coalib.settings.Section.Section method), 115
bearclass (class in coalib.bears.meta), 54
Body (class in coalib.bearlib.aspects.Metadata), 8
Body.Existence (class in coalib.bearlib.aspects.Metadata),
8
Body.Length (class in coalib.bearlib.aspects.Metadata), 8

coalib.bearlib.abstractions (module), 7
coalib.bearlib.abstractions.ExternalBearWrap (module), 3
coalib.bearlib.abstractions.Linter (module), 3
coalib.bearlib.abstractions.SectionCreatable (module), 7
coalib.bearlib.aspects (module), 27
coalib.bearlib.aspects.base (module), 19
coalib.bearlib.aspects.collections (module), 19
coalib.bearlib.aspects.docs (module), 20
coalib.bearlib.aspects.meta (module), 20
coalib.bearlib.aspects.Metadata (module), 8
coalib.bearlib.aspects.Redundancy (module), 14
coalib.bearlib.aspects.root (module), 20
coalib.bearlib.aspects.Spelling (module), 19
coalib.bearlib.aspects.taste (module), 26
coalib.bearlib.languages (module), 44

build_editor_call_args() (coalib.results.result_actions.OpenEaiabitAlmt i IpagEdgen: Aefiomions (module), 34

method), 95
BuildManPage (class in coalib.misc.BuildManPage), 67

C

calc_line_col() (in
coalib.results. AbsolutePosition), 98
CAN_DETECT (coalib.bears.Bear.Bear attribute), 51
can_detect (coalib.bears.Bear.Bear attribute), 51
CAN_DETECT (coalib.core.Bear.Bear attribute), 60
can_detect (coalib.core.Bear.Bear attribute), 60
CAN_FIX (coalib.bears.Bear.Bear attribute), 51
CAN_FIX (coalib.core.Bear.Bear attribute), 60
change (coalib.results.LineDiff.LineDiff attribute), 103
change_line() (coalib.results.Diff.Diff method), 99
check_circular_dependencies()

module

coalib.bearlib.languages.definitions.C (module), 34
coalib.bearlib.languages.definitions.CPP (module), 34
coalib.bearlib.languages.definitions.CSharp (module), 34
coalib.bearlib.languages.definitions.CSS (module), 34
coalib.bearlib.languages.definitions.Golang (module), 34
coalib.bearlib.languages.definitions.Java (module), 34
coalib.bearlib.languages.definitions.JavaScript (module),
34
coalib.bearlib.languages.definitions.Python (module), 34
coalib.bearlib.languages.definitions.Unknown (module),
34
coalib.bearlib.languages.definitions.Vala (module), 34
coalib.bearlib.languages.documentation (module), 39
coalib.bearlib.languages.documentation.DocstyleDefinition
(module), 35

(coalib.core.DependencyTracker.DependencyTrackeplib.bearlib.languages.documentation. DocumentationComment

method), 64
check_conflicts() (in module coalib.parsing.CliParsing),
82

(module), 37
coalib.bearlib.languages.documentation.DocumentationExtraction
(module), 38

check_consistency() (coalib.bearlib.aspects.docs.Documenta‘iﬁ?ﬂibbearhb~1anguages-Language (module), 39

method), 20
check_prerequisites()
method), 51
check_prerequisites()
method), 60
check_result_ignore() (in
coalib.processes.Processing), 91

(coalib.bears.Bear.Bear class

(coalib.core.Bear.Bear class

module

coalib.bearlib.languages.LanguageDefinition
43

coalib.bearlib.naming_conventions (module), 44

coalib.bearlib.spacing (module), 47

coalib.bearlib.spacing.SpacingHelper (module), 46

coalib.bears (module), 54

coalib.bears.Bear (module), 49

(module),

check_results() (coalib.testing.LocalBearTestHelper.LocalBGﬁﬂ@%ﬂH@IﬁeBEAR_KIND (module), 49

method), 119

check_validity() (coalib.testing.LocalBearTestHelper. Local BOAMTRAEM kP

method), 120
choose_action() (in
coalib.output.Consolelnteraction), 76
CircularDependencyError, 56, 62
cleanup_bear() (in module coalib.core.Core), 62
Clone (class in coalib.bearlib.aspects.Redundancy), 14
coalib (module), 122
coalib.bearlib (module), 47

module

coalib.bears.GlobalBear (module), 53
calBear (module), 54
coalib.bears.meta (module), 54
coalib.coala (module), 121
coalib.coala_ci (module), 121
coalib.coala_delete_orig (module), 121
coalib.coala_format (module), 121
coalib.coala_json (module), 121
coalib.coala_main (module), 121
coalib.coala_modes (module), 122

206

Index

coala Documentation, Release 0.11.0

coalib.collecting (module), 58
coalib.collecting.Collectors (module), 54
coalib.collecting.Dependencies (module), 56
coalib.collecting. Importers (module), 57
coalib.core (module), 67
coalib.core.Bear (module), 58
coalib.core.CircularDependencyError (module), 62
coalib.core.Core (module), 62
coalib.core.DependencyTracker (module), 63
coalib.core.Graphs (module), 66
coalib.misc (module), 73
coalib.misc.BuildManPage (module), 67
coalib.misc.Caching (module), 68
coalib.misc.CachingUtilities (module), 69
coalib.misc.Compatibility (module), 71
coalib.misc.Constants (module), 71
coalib.misc.DictUtilities (module), 71
coalib.misc.Enum (module), 71
coalib.misc.Exceptions (module), 71
coalib.misc.Shell (module), 72
coalib.output (module), 81
coalib.output.ConfWriter (module), 75
coalib.output.Consolelnteraction (module), 75
coalib.output.Interactions (module), 81
coalib.output.JSONEncoder (module), 81
coalib.output.Logging (module), 81
coalib.output.printers (module), 75
coalib.output.printers.ListLogPrinter (module), 74
coalib.output.printers. LOG_LEVEL (module), 73
coalib.output.printers.LogPrinter (module), 74
coalib.parsing (module), 85
coalib.parsing.CliParsing (module), 82
coalib.parsing.ConfParser (module), 83
coalib.parsing.DefaultArgParser (module), 83
coalib.parsing.Globbing (module), 83
coalib.parsing.LineParser (module), 85
coalib.processes (module), 94
coalib.processes.BearRunning (module), 86
coalib.processes.communication (module), 86
coalib.processes.communication.LogMessage (module),
85
coalib.processes. CONTROL_ELEMENT (module), 90
coalib.processes.LogPrinterThread (module), 90
coalib.processes.Processing (module), 90
coalib.results (module), 108
coalib.results. AbsolutePosition (module), 98
coalib.results.Diff (module), 98
coalib.results.HiddenResult (module), 103
coalib.results.LineDiff (module), 103
coalib.results.Result (module), 103
coalib.results.result_actions (module), 98
coalib.results.result_actions.ApplyPatchAction (module),
95

coalib.results.result_actions.IgnoreResultAction (mod-
ule), 95

coalib.results.result_actions.OpenEditorAction (module),
95

coalib.results.result_actions.PrintAspectAction (module),
96

coalib.results.result_actions.PrintDebugMessageAction
(module), 96
coalib.results.result_actions.PrintMoreInfoAction (mod-
ule), 96
coalib.results.result_actions.ResultAction (module), 96
coalib.results.result_actions.ShowPatchAction (module),
97
coalib.results. RESULT_SEVERITY (module), 103
coalib.results.ResultFilter (module), 105
coalib.results.SourcePosition (module), 106
coalib.results.SourceRange (module), 106
coalib.results. TextPosition (module), 107
coalib.results.TextRange (module), 108
coalib.settings (module), 119
coalib.settings. Annotations (module), 109
coalib.settings.ConfigurationGathering (module), 109
coalib.settings.DocstringMetadata (module), 112
coalib.settings.FunctionMetadata (module), 113
coalib.settings.Section (module), 115
coalib.settings.SectionFilling (module), 117
coalib.settings.Setting (module), 118
coalib.testing (module), 121
coalib.testing.BearTestHelper (module), 119
coalib.testing.LocalBearTestHelper (module), 119
collect_all_bears_from_sections() (in
coalib.collecting.Collectors), 54
collect_bears() (in module coalib.collecting.Collectors),
55
collect_dirs() (in module coalib.collecting.Collectors), 55
collect_files() (in module coalib.collecting.Collectors), 55

module

collect_registered_bears_dirs() (in module
coalib.collecting.Collectors), 55
ColonExistence (class in

coalib.bearlib.aspects.Metadata), 8

column (coalib.results. TextPosition. TextPosition at-
tribute), 107

CommitMessage (class in
coalib.bearlib.aspects.Metadata), 8

CommitMessage.Body (class in

coalib.bearlib.aspects.Metadata), 8
CommitMessage.Body.Existence (class in
coalib.bearlib.aspects.Metadata), 8
CommitMessage.Body.Length (class in
coalib.bearlib.aspects.Metadata), 9
CommitMessage.Emptiness (class in
coalib.bearlib.aspects.Metadata), 9
CommitMessage.Shortlog (class in
coalib.bearlib.aspects.Metadata), 9

Index

207

coala Documentation, Release 0.11.0

CommitMessage.Shortlog.ColonExistence (class in desc (coalib.bearlib.languages.documentation.DocumentationComment.Doc

coalib.bearlib.aspects.Metadata), 9 attribute), 37
CommitMessage.Shortlog. FirstCharacter ~ (class in desc (coalib.bearlib.languages.documentation.DocumentationComment.Doc
coalib.bearlib.aspects.Metadata), 9 attribute), 37
CommitMessage.Shortlog.Length (class in desc (coalib.settings.FunctionMetadata.FunctionMetadata
coalib.bearlib.aspects.Metadata), 9 attribute), 113
CommitMessage.Shortlog.Tense (class in Diff (class in coalib.results.Diff), 98
coalib.bearlib.aspects.Metadata), 10 do_nothing() (in module coalib.coala_main), 121
CommitMessage.Shortlog.TrailingPeriod ~ (class in docs (coalib.bearlib.aspects.Metadata.Body attribute), 8
coalib.bearlib.aspects.Metadata), 10 docs (coalib.bearlib.aspects.Metadata.Body.Existence at-
configure_json_logging() (in module tribute), 8
coalib.output.Logging), 81 docs (coalib.bearlib.aspects.Metadata.Body.Length
configure_logging() (in module coalib.output.Logging), attribute), 8
81 docs (coalib.bearlib.aspects.Metadata.ColonExistence at-
ConflictError, 103 tribute), 8
ConfParser (class in coalib.parsing.ConfParser), 83 docs (coalib.bearlib.aspects.Metadata.CommitMessage
ConfWriter (class in coalib.output.ConfWriter), 75 attribute), 10
copy() (coalib.settings.Section.Section method), 115 docs (coalib.bearlib.aspects.Metadata.CommitMessage.Body
CounterHandler (class in coalib.output.Logging), 81 attribute), 9
create_json_encoder() (in module docs (coalib.bearlib.aspects.Metadata.CommitMessage.Body.Existence
coalib.output.JSONEncoder), 81 attribute), 8
create_params_from_section() docs (coalib.bearlib.aspects.Metadata.CommitMessage.Body.Length
(coalib.settings.FunctionMetadata.FunctionMetadata attribute), 9
method), 113 docs (coalib.bearlib.aspects.Metadata.CommitMessage.Emptiness
create_process_group() (in module attribute), 9
coalib.processes.Processing), 91 docs (coalib.bearlib.aspects.Metadata.CommitMessage.Shortlog
CustomFormatter (class in attribute), 10
coalib.parsing.DefaultArgParser), 83 docs (coalib.bearlib.aspects.Metadata.CommitMessage.Shortlog.ColonExist
attribute), 9
D docs (coalib.bearlib.aspects.Metadata.CommitMessage.Shortlog.FirstChara
data_dir (coalib.bears.Bear.Bear attribute), 52 attribute), 9
data_dir (coalib.core.Bear.Bear attribute), 60 docs (coalib.bearlib.aspects.Metadata. CommitMessage.Shortlog.Length
debug() (coalib.output.printers.LogPrinter.LogPrinterMixin attribute), 9
method), 74 docs (coalib.bearlib.aspects.Metadata.CommitMessage.Shortlog. Tense
default_arg_parser() (in module attribute), 10
coalib.parsing.DefaultArgParser), 83 docs (coalib.bearlib.aspects.Metadata. CommitMessage.Shortlog. TrailingPer
DEFAULT_TAB_WIDTH attribute), 10
(coalib.bearlib.spacing.SpacingHelper.SpacingHel)egs (coalib.bearlib.aspects.Metadata. Emptiness at-
attribute), 46 tribute), 10
delete (coalib.results. Diff.Diff attribute), 99 docs (coalib.bearlib.aspects.Metadata.Existence at-
delete (coalib.results.LineDiff.LineDiff attribute), 103 tribute), 10
delete_files() (in module coalib.misc.CachingUtilities), docs (coalib.bearlib.aspects.Metadata.FirstCharacter at-
69 tribute), 11
delete_line() (coalib.results.Diff.Diff method), 99 docs (coalib.bearlib.aspects.Metadata.Length attribute),
delete_lines() (coalib.results.Diff.Diff method), 99 11
delete_setting() (coalib.settings.Section.Section method), docs (coalilb%.bearlib.aspects.Metadata.Metadata attribute),
116 3
dependency_results (coalib.core.Bear.Bear attribute), 60 docs (coalib.bearlib.aspects.Metadata.Metadata.CommitMessage
DependencyTracker (class in attribute), 13
coalib.core.DependencyTracker), 63 docs (coalib.bearlib.aspects.Metadata.Metadata. CommitMessage.Body
deprecate_bear() (in module coalib.bearlib), 47 attribute), 11
deprecate_settings() (in module coalib.bearlib), 47 docs (coalib.bearlib.aspects.Metadata.Metadata.CommitMessage.Body.Exis

desc (coalib.bearlib.languages.documentation.DocumentationCommetﬁ?lﬂ@éﬁ%ieﬂlﬂationComment.Description
attribute), 37 docs (coalib.bearlib.aspects.Metadata.Metadata. CommitMessage.Body.Leng

208 Index

coala Documentation, Release 0.11.0

attribute), 11 docs (coalib.bearlib.aspects.Redundancy.UnreachableCode.UnreachableStat
docs (coalib.bearlib.aspects.Metadata.Metadata.CommitMessage.Emptitteitsute), 16

attribute), 12 docs (coalib.bearlib.aspects.Redundancy.UnreachableCode.UnusedFunction
docs (coalib.bearlib.aspects.Metadata.Metadata. CommitMessage.Shordlitgibute), 16

attribute), 13 docs (coalib.bearlib.aspects.Redundancy.UnreachableStatement
docs (coalib.bearlib.aspects.Metadata.Metadata. CommitMessage.Shortltg tiedon Existence

attribute), 12 docs (coalib.bearlib.aspects.Redundancy.UnusedFunction
docs (coalib.bearlib.aspects.Metadata.Metadata.CommitMessage.Shortlig HitsyCHaracter

attribute), 12 docs (coalib.bearlib.aspects.Redundancy.UnusedGlobal Variable
docs (coalib.bearlib.aspects.Metadata.Metadata. CommitMessage.Shortlig Hutagth7

attribute), 12 docs (coalib.bearlib.aspects.Redundancy.UnusedImport
docs (coalib.bearlib.aspects.Metadata.Metadata. CommitMessage.Shortlivg bieege 1 7

attribute), 12 docs (coalib.bearlib.aspects.Redundancy.UnusedLocal Variable
docs (coalib.bearlib.aspects.Metadata.Metadata. CommitMessage.Shorslivg birtailidgPeriod

attribute), 12 docs (coalib.bearlib.aspects.Redundancy.UnusedParameter
docs (coalib.bearlib.aspects.Metadata.Shortlog attribute), attribute), 18

14 docs (coalib.bearlib.aspects.Redundancy.Unused Variable
docs (coalib.bearlib.aspects.Metadata.Shortlog.ColonExistence attribute), 18

attribute), 13 docs (coalib.bearlib.aspects.Redundancy.Unused Variable.UnusedGlobal Var
docs (coalib.bearlib.aspects.Metadata.Shortlog. FirstCharacter attribute), 18

attribute), 13 docs (coalib.bearlib.aspects.Redundancy.Unused Variable.UnusedLocal Variz
docs (coalib.bearlib.aspects.Metadata.Shortlog.Length at- attribute), 18

tribute), 13 docs (coalib.bearlib.aspects.Redundancy.Unused Variable.UnusedParameter
docs (coalib.bearlib.aspects.Metadata.Shortlog. Tense at- attribute), 18

tribute), 14 docs (coalib.bearlib.aspects.Root.Metadata attribute), 31
docs (coalib.bearlib.aspects.Metadata.Shortlog. TrailingPeriodocs (coalib.bearlib.aspects.Root. Metadata. CommitMessage

attribute), 14 attribute), 31
docs (coalib.bearlib.aspects.Metadata.Tense attribute), 14 docs (coalib.bearlib.aspects.Root.Metadata.CommitMessage.Body
docs (coalib.bearlib.aspects.Metadata. TrailingPeriod at- attribute), 29

tribute), 14 docs (coalib.bearlib.aspects.Root.Metadata. CommitMessage.Body.Existenc
docs (coalib.bearlib.aspects.Redundancy.Clone attribute), attribute), 29

14 docs (coalib.bearlib.aspects.Root. Metadata.CommitMessage.Body.Length
docs (coalib.bearlib.aspects.Redundancy.Redundancy at- attribute), 29

tribute), 16 docs (coalib.bearlib.aspects.Root.Metadata.CommitMessage.Emptiness
docs (coalib.bearlib.aspects.Redundancy.Redundancy.Clone attribute), 29

attribute), 15 docs (coalib.bearlib.aspects.Root.Metadata. CommitMessage.Shortlog
docs (coalib.bearlib.aspects.Redundancy.Redundancy.UnreachableCodstribute), 31

attribute), 15 docs (coalib.bearlib.aspects.Root.Metadata.CommitMessage.Shortlog.Color
docs (coalib.bearlib.aspects.Redundancy.Redundancy.Unreachable CodeftihntaghableStatement

attribute), 15 docs (coalib.bearlib.aspects.Root.Metadata. CommitMessage.Shortlog.First(
docs (coalib.bearlib.aspects.Redundancy.Redundancy. Unreachable Codetftihuseld Béinction

attribute), 15 docs (coalib.bearlib.aspects.Root.Metadata.CommitMessage.Shortlog.Leng
docs (coalib.bearlib.aspects.Redundancy.Redundancy.UnusedImport attribute), 30

attribute), 15 docs (coalib.bearlib.aspects.Root.Metadata.CommitMessage.Shortlog. Tense
docs (coalib.bearlib.aspects.Redundancy.Redundancy.Unused Variable attribute), 30

attribute), 16 docs (coalib.bearlib.aspects.Root.Metadata. CommitMessage.Shortlog. Traili
docs (coalib.bearlib.aspects.Redundancy.Redundancy.Unused Variable dftritset(16Bal Variable

attribute), 16 docs (coalib.bearlib.aspects.Root.Redundancy attribute),
docs (coalib.bearlib.aspects.Redundancy.Redundancy.Unused Variable ¥ZnusedLocal Variable

attribute), 16 docs (coalib.bearlib.aspects.Root.Redundancy.Clone at-
docs (coalib.bearlib.aspects.Redundancy.Redundancy.Unused Variable fribusey]Parameter

attribute), 16 docs (coalib.bearlib.aspects.Root.Redundancy.UnreachableCode
docs (coalib.bearlib.aspects.Redundancy.UnreachableCode attribute), 32

attribute), 17 docs (coalib.bearlib.aspects.Root.Redundancy. UnreachableCode.Unreachab

Index 209

coala Documentation, Release 0.11.0

attribute), 31 attribute), 25
docs (coalib.bearlib.aspects.Root.Redundancy.Unreachable Glals (boadehl Baaditoaspects.root. Root.Redundancy.Unused Variable. Unused!
attribute), 31 attribute), 26
docs (coalib.bearlib.aspects.Root.Redundancy.UnusedImportlocs (coalib.bearlib.aspects.root.Root.Spelling attribute),
attribute), 32 26
docs (coalib.bearlib.aspects.Root.Redundancy.Unused Variatdecs (coalib.bearlib.aspects.root.Root.Spelling.aspectsYEAH
attribute), 32 attribute), 26
docs (coalib.bearlib.aspects.Root.Redundancy.Unused Variabdeddr(usediGlodmilVansidets. Root. Spelling attribute), 33
attribute), 32 docs (coalib.bearlib.aspects.Root.Spelling.aspectsYEAH
docs (coalib.bearlib.aspects.Root.Redundancy.Unused Variable. Unuse dtwdabké&)iaBle
attribute), 32 docs (coalib.bearlib.aspects.Spelling.aspectsYEAH at-
docs (coalib.bearlib.aspects.Root.Redundancy.Unused Variable. UnusedPiimatag té¢
attribute), 32 docs (coalib.bearlib.aspects.Spelling.Spelling attribute),
docs (coalib.bearlib.aspects.root.Root.Metadata at- 19
tribute), 24 docs (coalib.bearlib.aspects.Spelling.Spelling.aspectsYEAH
docs (coalib.bearlib.aspects.root.Root. Metadata. CommitMessage attribute), 19
attribute), 24 DocstringMetadata (class in
docs (coalib.bearlib.aspects.root.Root. Metadata. CommitMessage.Bodyoalib.settings.DocstringMetadata), 112
attribute), 23 docstyle (coalib.bearlib.languages.documentation.DocstyleDefinition.Docst
docs (coalib.bearlib.aspects.root.Root. Metadata. CommitMessage. Bod nifiistaaics 5
attribute), 22 docstyle (coalib.bearlib.languages.documentation.DocumentationComment.
docs (coalib.bearlib.aspects.root.Root.Metadata. CommitMessage.Bodnftihgth), 37
attribute), 23 DocstyleDefinition (class in
docs (coalib.bearlib.aspects.root.Root. Metadata. CommitMessage. Emptomsb.bearlib.languages.documentation. DocstyleDefinition),
attribute), 23 35
docs (coalib.bearlib.aspects.root.Root.Metadata. CommitMe QagsSheldigition. Metadata (class in
attribute), 24 coalib.bearlib.languages.documentation.DocstyleDefinition),
docs (coalib.bearlib.aspects.root.Root.Metadata. CommitMessage.Shorflog.ColonExistence
attribute), 23 Documentation (class in coalib.bearlib.aspects.docs), 20
docs (coalib.bearlib.aspects.root.Root. Metadata. CommitMedSage1 Stenttd i gdGistithanacter (class in
attribute), 23 coalib.bearlib.languages.documentation. DocumentationComment
docs (coalib.bearlib.aspects.root.Root.Metadata. CommitMessage.Shorglog.Length
attribute), 23 DocumentationComment.Description (class in
docs (coalib.bearlib.aspects.root.Root.Metadata. CommitMessage.Shortlegdibdeserlib.languages.documentation. DocumentationComment
attribute), 24 37
docs (coalib.bearlib.aspects.root.Root. Metadata. CommitMedSagri Slemtt i grilTadingRerRadameter (class in
attribute), 24 coalib.bearlib.languages.documentation. DocumentationComment
docs (coalib.bearlib.aspects.root.Root.Redundancy 37
attribute), 26 DocumentationComment.ReturnValue (class in
docs (coalib.bearlib.aspects.root.Root.Redundancy.Clone coalib.bearlib.languages.documentation.DocumentationComment
attribute), 24 37
docs (coalib.bearlib.aspects.root.Root.Redundancy. Unreachabdedddad_cached_file() (coalib.bears.Bear.Bear method),
attribute), 25 52
docs (coalib.bearlib.aspects.root.Root.Redundancy. Unreachabde(iddedUrachetabileSyatewentib.core.Bear.Bear class
attribute), 25 method), 61

docs (coalib.bearlib.aspects.root.Root.Redundancy.UnreachableCode.UnusedFunction
attribute), 25

docs (coalib.bearlib.aspects.root.Root.Redundancy. Unusedlgpgit) (coalib.output.Logging.CounterHandler ~ class
attribute), 25 method), 81

docs (coalib.bearlib.aspects.root.Root.Redundancy.Unused VRiighligiess (class in coalib.bearlib.aspects.Metadata), 10
attribute), 26 end (coalib.results. TextRange. TextRange attribute), 108

docs (coalib.bearlib.aspects.root.Root.Redundancy. Unused Vapiahle. Hisasqserahgl Variable (in module
attribute), 25 coalib.results.ResultFilter), 105

docs (coalib.bearlib.aspects.root.Root.Redundancy.Unused Vagighle, dausgsiluds dyannhlc. Enum), 71

210 Index

coala Documentation, Release 0.11.0

err() (coalib.output.printers.LogPrinter.LogPrinterMixin
method), 74

execute() (coalib.bears.Bear.Bear method), 52

execute_bear() (in module
coalib.testing.LocalBearTestHelper), 120

execute_section() (in module
coalib.processes.Processing), 91

execute_task() (coalib.core.Bear.Bear method), 61

Existence (class in coalib.bearlib.aspects.Metadata), 10

expand() (coalib.results.SourceRange.SourceRange
method), 107

expand() (coalib.results.TextRange.TextRange method),
108

external_bear_wrap() (in module
coalib.bearlib.abstractions.ExternalBearWrap),
3

extract_documentation()

(in module

flush_cache() (coalib.misc.Caching.FileCache method),
69
fnmatch() (in module coalib.parsing.Globbing), 83

for_bears() (coalib.collecting. Dependencies.CircularDependencyError

class method), 56
format() (coalib.output.Logging.JSONFormatter static
method), 81

format_line() (in module
coalib.results.result_actions.ShowPatchAction),
97

format_lines() (in module

coalib.output.Consolelnteraction), 77

format_man_page() (coalib.misc.BuildManPage.ManPageFormatter

method), 68

from_absolute_position()
(coalib.results.SourceRange.SourceRange
class method), 107

coalib.bearlib.languages.documentation.DocumenfatomEktnactfini)() (coalib.results.Diff.Diff class method),

38

extract_documentation_with_markers() (in module

99

from_clang_range() (coalib.results.SourceRange.SourceRange

coalib.bearlib.languages.documentation. DocumentationExtratassmhethod), 107

39

F

fail_acquire_settings() (in
coalib.output.Interactions), 81
(coalib.results.SourcePosition.SourcePosition at-
tribute), 106
file (coalib.results.SourceRange.SourceRange attribute),
107
FileCache (class in coalib.misc.Caching), 68
fill_queue() (in module coalib.processes.Processing), 92
fill_section() (in module coalib.settings.SectionFilling),
117
fill_settings() (in module coalib.settings.SectionFilling),
118
filter_capabilities_by_languages() (in
coalib.collecting.Collectors), 55

module

file

module

from_docstring() (coalib.settings.DocstringMetadata.DocstringMetadata

class method), 112

from_function() (coalib.settings.FunctionMetadata. FunctionMetadata

class method), 113

from_metadata() (coalib.bearlib.languages.documentation.DocumentationC

class method), 37

from_section() (coalib.bearlib.abstractions.SectionCreatable.SectionCreatat

class method), 7

from_string_arrays() (coalib.results.Diff.Diff ~ class
method), 99

from_unified_diff() (coalib.results.Diff. Diff class
method), 99

from_values() (coalib.results.Result.Result class method),
104

from_values() (coalib.results.SourceRange.SourceRange
class method), 107
from_values() (coalib.results.TextRange.TextRange class

filter_parameters() (coalib.settings.FunctionMetadata. FunctionMetadamethod), 108

method), 113
filter_raising_callables() (in

coalib.processes.Processing), 92
filter_results() (in module coalib.results.ResultFilter), 105
filter_section_bears_by_languages() (in module

coalib.collecting.Collectors), 56

module

finalize_options() (coalib.misc.BuildManPage.BuildManPage

method), 68
find_user_config() (in module
coalib.settings.ConfigurationGathering),
109
finish_task() (in module coalib.core.Core), 63
FirstCharacter (class in coalib.bearlib.aspects.Metadata),
10

FunctionMetadata (class in
coalib.settings. FunctionMetadata), 113

G

gather_configuration() (in module

coalib.settings.ConfigurationGathering),

109

generate_skip_decorator() (in
coalib.testing.BearTestHelper), 119

generate_tasks() (coalib.core.Bear.Bear method), 61

get() (coalib.settings.Section.Section method), 116

get_action_info() (in module
coalib.output.Consolelnteraction), 77

get_all_bears() (in module coalib.collecting.Collectors),
56

module

Index

211

coala Documentation, Release 0.11.0

get_all_bears_names() (in module (coalib.bearlib.abstractions.SectionCreatable.SectionCreatable
coalib.collecting.Collectors), 56 class method), 7
get_all_dependants() (coalib.core.DependencyTracker.Depegdenegil rapitirnal _settings() (coalib.bears.Bear.Bear class
method), 65 method), 52
get_all_dependencies() (coalib.core.DependencyTracker. Depgetidenny dpaakeal _settings() (coalib.core.Bear.Bear class
method), 65 method), 62
get_available_definitions() get_num_calls_for_level()
(coalib.bearlib.languages.documentation.DocstyleDefinition(Busdsbydelfrfidiogging. CounterHandler class
static method), 35 method), 81
get_config_dir() (coalib.bears.Bear.Bear method), 52 get_optional_settings() (coalib.bearlib.abstractions.SectionCreatable.Sectiot
get_config_dir() (coalib.core.Bear.Bear method), 62 class method), 7
get_config_directory() (in module get_running_processes() (in module
coalib.settings.ConfigurationGathering), coalib.processes.Processing), 92
110 get_section() (coalib.parsing.ConfParser.ConfParser
get_cpu_count() (in module coalib.processes.Processing), method), 83
92 get_settings_hash() (in module
get_data_path() (in module coalib.misc.CachingUtilities), coalib.misc.CachingUtilities), 70
70 get_shell_type() (in module coalib.misc.Shell), 72
get_default_actions() (in module get_uncached_files() (coalib.misc.Caching.FileCache
coalib.processes.Processing), 92 method), 69
get_default_version() (coalib.bearlib.languages.Language.Laeguagesion() (in module coalib), 122
method), 42 glob() (in module coalib.parsing.Globbing), 84
get_dependants() (coalib.core.DependencyTracker.Dependegdpbitackemodule coalib.settings.Setting), 118
method), 65 glob_escape() (in module coalib.parsing.Globbing), 84
get_dependencies() (coalib.core.DependencyTracker.Dependinby TistCkén module coalib.settings.Setting), 118
method), 65 GlobalBear (class in coalib.bears.GlobalBear), 53

get_exitcode() (in module coalib.misc.Exceptions), 71
get_file_dict() (in module coalib.processes.Processing), H

92 has_wildcard() (in module coalib.parsing.Globbing), 84
get_file_list() (in module coalib.processes.Processing), 92 hash_id() (in module coalib.misc.CachingUtilities), 70
get_filtered_bears() (in module HiddenResult (class in coalib.results.HiddenResult), 103

coalib.settings.ConfigurationGathering), highlight_text() (in module

111 coalib.output.Consolelnteraction), 77
get_global_dependency_results() (in module

coalib.processes.BearRunning), 86 |

get_ignore_comment() (coalib.results.result_actions. gnoreRrg Elﬁléétﬁiﬁﬂ‘ {ﬁBﬁ{ﬁg‘E%‘éﬁﬁ%@ﬂ% cting.Collectors), 56
) method), 95) icollect_bears() (in module coalib.collecting.Collectors),
get_ignore_scope() (in module 56

) co?llib.proces.ses.Prolcessing.), 92) iglob() (in module coalib.parsing.Globbing), 84
get_indentation() (coahb.bearhb.spacmg.SpacmgHelper.Spafé% PREGItAction (class in

method), 46 . coalib.results.result_actions.IgnoreResultAction),
get_local_dependency_results() (in module 95

coalib.pr0§esses.BearRunnigg) » 86) iimpqrt_objectsﬁ) (in module coalib.collecting.Importers),
get_metadata() (coahb.bearhb.abstractlons.SectlonCreatable.Sectloane-Ptab e

class method), 7 import_objects() (in module coalib.collecting.Importers),

get_metadata() (coalib.bears.Bear.Bear class method), 52 57
get_metadata() (coalib.bears.LocalBear.LocalBear class INCLUDE_LOCAL_FILES (coalib.bears.Bear.Bear at-
method), 54 - - ’ T

tribute), 51

get_metadata() (coalib.core.Bear.Bear class method), 62 INCLUDE_LOCAL_FILES (coalib.core.Bear.Bear at-
get_metadata() (coalib.results.result_actions.ResultAction.ResultActiqlll_ibute) 60_

class method), 97 . info() (coalib.output.printers.LogPrinter.LogPrinterMixin
get_next_global_bear() (in module method), 74

coalib.processes.BearRunning), 86 initialize_options() (coalib.misc.BuildManPage. BuildManPage
get_non_optional_settings() method), 68

212 Index

coala Documentation, Release 0.11.0

insert() (coalib.results.Diff.Diff method), 100 Languages (class in coalib.bearlib.languages.Language),
instantiate_bears() (in module 42
coalib.processes.Processing), 92 LANGUAGES (coalib.bears.Bear.Bear attribute), 51
instantiate_processes() (in module LANGUAGES (coalib.core.Bear.Bear attribute), 60
coalib.processes.Processing), 93 LanguageUberMeta (class in
inverse_dicts() (in module coalib.misc.DictUetilities), 71 coalib.bearlib.languages.Language), 42
is_applicable() (coalib.results.result_actions. ApplyPatchActioenAghplyBascinAsciadib. bearlib.aspects.Metadata), 11
static method), 95 LICENSE (coalib.bears.Bear.Bear attribute), 51
is_applicable() (coalib.results.result_actions.IgnoreResultAdliiHN&EaRealib AotmBear.Bear attribute), 60
static method), 95 limit_versions() (in module
is_applicable() (coalib.results.result_actions.OpenEditorAction.OpenErisditAlm¢rohib.languages.Language), 43
static method), 96 line (coalib.results. TextPosition.TextPosition attribute),
is_applicable() (coalib.results.result_actions.PrintAspectAction.PrintAkp8ctAction
static method), 96 LineDiff (class in coalib.results.LineDiff), 103
is_applicable() (coalib.results.result_actions.PrintDebugMeskigePatien(PlansDe oghtepsagavkdtiime Parser), 85
static method), 96 linter() (in module coalib.bearlib.abstractions.Linter), 3
is_applicable() (coalib.results.result_actions.PrintMoreInfo ActittnoBBntvbwreInfoAction (class in
static method), 96 coalib.output.printers.ListLogPrinter), 74
is_applicable() (coalib.results.result_actions.ResultAction.RbsadiA ctmadib.bearlib.languages.documentation.DocstyleDefinition.Docstyle
static method), 97 class method), 36
is_applicable() (coalib.results.result_actions.ShowPatchActiton8 hoswPatchifec)ion (in module
static method), 97 coalib.settings.ConfigurationGathering),
is_comment() (coalib.output.ConfWriter.ConfWriter 111
static method), 75 load_configuration() (in module
is_enabled() (coalib.settings.Section.Section method), coalib.settings.ConfigurationGathering),
116 111
isaspect() (in module coalib.bearlib.aspects.meta), 20 LocalBear (class in coalib.bears.LocalBear), 54
issubaspect() (in module coalib.bearlib.aspects.meta), 20 LocalBearTestHelper (class in
coalib.testing.LocalBearTestHelper), 119
J location_repr() (coalib.results.Result.Result method), 104
join() (coalib.results. TextRange. TextRange class 10g() (coalib.output.printers.LogPrinter.LogPrinterMixin
method), 108 method), 74
JSONFormatter (class in coalib.output.Logging), 81 log_exception() (coalib.output.printers.LogPrinter.LogPrinterMixin
method), 74
K log_level (coalib.output.printers.LogPrinter.LogPrinter
key (coalib.settings.Setting.Setting attribute), 118 attribute), 74
kind() (coalib.bears.Bear.Bear static method), 53 log_message() (coal.lb.bears.Bez.lr.Bear r.nethod),.S 3))
kind() (coalib.bears.GlobalBear.GlobalBear static 10g_message() (coalib.output.printers.ListLogPrinter.ListLogPrinter
method), 53 method), 74
kind() (coalib.bears.LocalBear.LocalBear static method), 108-message() (coalib.output.printers.LogPrinter.LogPrinter
54 method), 74
log_message() (coalib.output.printers.LogPrinter.LogPrinterMixin
L method), 74
LogMessage (class in

Language (class in coalib.bearlib.languages.Language), . >
39 coalib.processes.communication.LogMessage),

language (coalib.bearlib.languages.documentation.DocstyleDeﬁnitjon.ﬁocstyl,eDeﬁnjtion . .
attribute), 35 LogPrinter (class in coalib.output.printers.LogPrinter), 74

language (coalib.bearlib.languages.documentation.Docurnerllta(fﬁ})rfégﬁlim&ﬁ%ocumentatioan)ci]rﬁ%fent in
attribute), 38 coalib.output.printers.LogPrinter), 74
’ LogPrinterThread (class in

LanguageDefinition (class in
coalib.bearlib.languages.LanguageDefinition),
43 M

LanguageMeta (class in
coalib.bearlib.languages.Language), 42 main() (in module coalib.coala), 121

coalib.processes.LogPrinterThread), 90

Index 213

coala Documentation, Release 0.11.0

main() (in module coalib.coala_ci), 121

main() (in module coalib.coala_delete_orig), 121

main() (in module coalib.coala_format), 121

main() (in module coalib.coala_json), 121

MAINTAINERS (coalib.bears.Bear.Bear attribute), 51

maintainers (coalib.bears.Bear.Bear attribute), 53

MAINTAINERS (coalib.core.Bear.Bear attribute), 60

maintainers (coalib.core.Bear.Bear attribute), 62

MAINTAINERS_EMAILS (coalib.bears.Bear.Bear at-
tribute), 51

maintainers_emails (coalib.bears.Bear.Bear attribute), 53

MAINTAINERS_EMAILS (coalib.core.Bear.Bear
attribute), 60

maintainers_emails (coalib.core.Bear.Bear attribute), 62

ManPageFormatter (class in coalib.misc.BuildManPage),
68

mode_json() (in module coalib.coala_modes), 122

mode_non_interactive() (in module coalib.coala_modes),
122

mode_normal() (in module coalib.coala_modes), 122

modified (coalib.results.Diff. Diff attribute), 100

modify_line() (coalib.results.Diff.Diff method), 100

N

name (coalib.bearlib.languages.documentation. DocumentationComment.Dc
attribute), 37

name (coalib.bears.Bear.Bear attribute), 53

name (coalib.core.Bear.Bear attribute), 62

new_result (coalib.bears.Bear.Bear attribute), 53

new_result (coalib.core.Bear.Bear attribute), 62

NoColorStyle (class in coalib.output.Consolelnteraction),
75

markers (coalib.bearlib.languages.documentation.DocstyleDgénitbptidogs paelaedi@isialib. settings. FunctionMetadata. FunctionMetadata

attribute), 36

merge() (coalib.settings.FunctionMetadata. FunctionMetadataothing_done()

class method), 114
merge_section_dicts() (in module
coalib.settings.ConfigurationGathering),
111
message (coalib.results.Result.Result attribute), 104
Metadata (class in coalib.bearlib.aspects.Metadata), 11

attribute), 114

(in module
coalib.output.Consolelnteraction), 77
O
object_defined_in() (in module
coalib.collecting.Importers), 57
OpenEditorAction (class in

metadata (coalib.bearlib.languages.documentation. DocstyleDefinition DogstyleReARIGOR 1c ons.OpenEditorAction)

attribute), 36

9

5
metadata (coalib.bearlib.languages.documentation.Documen(%tﬂ'l%gpIﬁgggﬁ{sl?&gﬁ%%gﬁ}%%mMetadma_FunctionMetadata

attribute), 38
Metadata.CommitMessage (class in
coalib.bearlib.aspects.Metadata), 11
Metadata.CommitMessage.Body (class in
coalib.bearlib.aspects.Metadata), 11
Metadata.CommitMessage.Body.Existence
coalib.bearlib.aspects.Metadata), 11
Metadata.CommitMessage.Body.Length (class in
coalib.bearlib.aspects.Metadata), 11
Metadata.CommitMessage.Emptiness (class in
coalib.bearlib.aspects.Metadata), 11
Metadata.CommitMessage.Shortlog (class in
coalib.bearlib.aspects.Metadata), 12
Metadata.CommitMessage.Shortlog.ColonExistence
(class in coalib.bearlib.aspects.Metadata), 12
Metadata.CommitMessage.Shortlog.FirstCharacter (class
in coalib.bearlib.aspects.Metadata), 12
Metadata.CommitMessage.Shortlog.Length (class in
coalib.bearlib.aspects.Metadata), 12
Metadata.CommitMessage.Shortlog.Tense
coalib.bearlib.aspects.Metadata), 12
Metadata.CommitMessage.Shortlog. TrailingPeriod (class
in coalib.bearlib.aspects.Metadata), 12
missing_dependencies() (coalib.bears.Bear.Bear
method), 53
mode_format() (in module coalib.coala_modes), 122

(class in

(class in

class

attribute), 114

original (coalib.results.Diff. Diff attribute), 101

overlaps() (coalib.results.Result.Result method), 104

overlaps() (coalib.results.SourceRange.SourceRange
method), 107

overlaps() (coalib.results.TextRange.TextRange method),
108

P

param_end (coalib.bearlib.languages.documentation.DocstyleDefinition.Do
attribute), 35
param_start (coalib.bearlib.languages.documentation.DocstyleDefinition.Dc
attribute), 35
parent (coalib.bearlib.aspects.Metadata.Body attribute), 8
parent (coalib.bearlib.aspects.Metadata.Body.Existence
attribute), 8
parent (coalib.bearlib.aspects.Metadata.Body.Length at-
tribute), 8
(coalib.bearlib.aspects.Metadata.ColonExistence
attribute), 8
parent (coalib.bearlib.aspects.Metadata.CommitMessage
attribute), 10
parent (coalib.bearlib.aspects.Metadata.CommitMessage.Body
attribute), 9
parent (coalib.bearlib.aspects.Metadata. CommitMessage.Body.Existence
attribute), 9

parent

214

Index

coala Documentation, Release 0.11.0

parent (coalib.bearlib.aspects.Metadata. CommitMessage.Bogsukangtroalib.bearlib.aspects.Metadata.Shortlog.Length

attribute), 9 attribute), 13

parent (coalib.bearlib.aspects.Metadata.CommitMessage. Emprtranss (coalib.bearlib.aspects.Metadata.Shortlog. Tense
attribute), 9 attribute), 14

parent (coalib.bearlib.aspects.Metadata. CommitMessage.Shqutont (coalib.bearlib.aspects.Metadata.Shortlog. TrailingPeriod
attribute), 10 attribute), 14

parent (coalib.bearlib.aspects.Metadata. CommitMessage.Shpittont Ca@oalidx xtankb.aspects.Metadata. Tense attribute),
attribute), 9 14

parent (coalib.bearlib.aspects.Metadata. CommitMessage.ShqutentKostibdraattib.aspects.Metadata. TrailingPeriod at-
attribute), 9 tribute), 14

parent (coalib.bearlib.aspects.Metadata. CommitMessage.ShqetontLengihalib.bearlib.aspects.Redundancy.Clone at-
attribute), 10 tribute), 14

parent (coalib.bearlib.aspects.Metadata. CommitMessage.Shgetent Tersoalib.bearlib.aspects.Redundancy.Redundancy
attribute), 10 attribute), 16

parent (coalib.bearlib.aspects.Metadata. CommitMessage.Shqutont TeadlitgPeaidid. aspects.Redundancy.Redundancy.Clone
attribute), 10 attribute), 15

parent (coalib.bearlib.aspects.Metadata.Emptiness at- parent (coalib.bearlib.aspects.Redundancy.Redundancy.UnreachableCode
tribute), 10 attribute), 15

parent (coalib.bearlib.aspects.Metadata.Existence at- parent (coalib.bearlib.aspects.Redundancy.Redundancy.UnreachableCode.U
tribute), 10 attribute), 15

parent (coalib.bearlib.aspects.Metadata.FirstCharacter at- parent (coalib.bearlib.aspects.Redundancy.Redundancy.UnreachableCode.U
tribute), 11 attribute), 15

parent (coalib.bearlib.aspects.Metadata.Length attribute), parent (coalib.bearlib.aspects.Redundancy.Redundancy.UnusedImport
11 attribute), 15

parent (coalib.bearlib.aspects.Metadata.Metadata at- parent (coalib.bearlib.aspects.Redundancy.Redundancy.UnusedVariable
tribute), 13 attribute), 16

parent (coalib.bearlib.aspects.Metadata.Metadata. CommitMgsezgxt (coalib.bearlib.aspects.Redundancy.Redundancy.Unused Variable.Unt
attribute), 13 attribute), 16

parent (coalib.bearlib.aspects.Metadata. Metadata. CommitM geszge. Bodlib.bearlib.aspects.Redundancy.Redundancy.Unused Variable. Unt
attribute), 11 attribute), 16

parent (coalib.bearlib.aspects.Metadata.Metadata. CommitM gssaget . Bodiikestditeaspects.Redundancy. Redundancy.Unused Variable. Unt
attribute), 11 attribute), 16

parent (coalib.bearlib.aspects.Metadata.Metadata. CommitM gssaget Bodkib.bagthb.aspects.Redundancy.UnreachableCode
attribute), 11 attribute), 17

parent (coalib.bearlib.aspects.Metadata. Metadata. CommitM geszge Ieoglimbesrlib.aspects.Redundancy.UnreachableCode.Unreachable St
attribute), 12 attribute), 16

parent (coalib.bearlib.aspects.Metadata.Metadata. CommitM geazgxt Sloatitolearlib.aspects.Redundancy.UnreachableCode. UnusedFunctic
attribute), 13 attribute), 17

parent (coalib.bearlib.aspects.Metadata.Metadata. CommitM gssagxt Sloatilhe@dibrispedtsnRe dundancy. UnreachableStatement
attribute), 12 attribute), 17

parent (coalib.bearlib.aspects.Metadata.Metadata. CommitM gsaagdt Sloatiobebnts(AspeatteRedundancy. UnusedFunction
attribute), 12 attribute), 17

parent (coalib.bearlib.aspects.Metadata.Metadata. CommitM geazgt Sloatitohebehlgispects. Redundancy. UnusedGlobal Variable
attribute), 12 attribute), 17

parent (coalib.bearlib.aspects.Metadata. Metadata. CommitM geezge. Sboatlibhdamde. aspects.Redundancy. UnusedImport
attribute), 12 attribute), 17

parent (coalib.bearlib.aspects.Metadata.Metadata. CommitM gsazgxt Sloati ohehrhiti aghatio® edundancy. UnusedLocal Variable
attribute), 13 attribute), 17

parent (coalib.bearlib.aspects.Metadata.Shortlog at- parent (coalib.bearlib.aspects.Redundancy.UnusedParameter
tribute), 14 attribute), 18

parent (coalib.bearlib.aspects.Metadata.Shortlog.ColonExistpacent (coalib.bearlib.aspects.Redundancy.Unused Variable
attribute), 13 attribute), 18

parent (coalib.bearlib.aspects.Metadata.Shortlog.FirstCharagparent (coalib.bearlib.aspects.Redundancy.Unused Variable.UnusedGlobal Vz
attribute), 13 attribute), 18

Index 215

coala Documentation, Release 0.11.0

parent (coalib.bearlib.aspects.Redundancy.Unused Variable. (pavsad [cocdiWingaHlib.aspects.root.Root. Metadata. CommitMessage.Body

attribute), 18 attribute), 23
parent (coalib.bearlib.aspects.Redundancy.Unused Variable. (pansad Rewalitetszarlib.aspects.root.Root. Metadata. CommitMessage.Body.Ex

attribute), 18 attribute), 22
parent (coalib.bearlib.aspects.Root attribute), 33 parent (coalib.bearlib.aspects.root.Root.Metadata.CommitMessage.Body.Le
parent (coalib.bearlib.aspects.Root.Metadata attribute), attribute), 23

31 parent (coalib.bearlib.aspects.root.Root.Metadata. CommitMessage.Emptine
parent (coalib.bearlib.aspects.Root.Metadata.CommitMessage attribute), 23

attribute), 31 parent (coalib.bearlib.aspects.root.Root.Metadata.CommitMessage.Shortlog
parent (coalib.bearlib.aspects.Root.Metadata.CommitMessage.Body attribute), 24

attribute), 29 parent (coalib.bearlib.aspects.root.Root.Metadata.CommitMessage.Shortlog
parent (coalib.bearlib.aspects.Root.Metadata. CommitMessage.Body.Eaistinte), 23

attribute), 29 parent (coalib.bearlib.aspects.root.Root.Metadata. CommitMessage.Shortlog
parent (coalib.bearlib.aspects.Root.Metadata. CommitMessage.Body.Lattgthute), 23

attribute), 29 parent (coalib.bearlib.aspects.root.Root.Metadata.CommitMessage.Shortlog
parent (coalib.bearlib.aspects.Root.Metadata.CommitMessage. Emptinastibute), 24

attribute), 30 parent (coalib.bearlib.aspects.root.Root.Metadata.CommitMessage.Shortlog
parent (coalib.bearlib.aspects.Root.Metadata.CommitMessage.Shortlogttribute), 24

attribute), 31 parent (coalib.bearlib.aspects.root.Root. Metadata. CommitMessage.Shortlog
parent (coalib.bearlib.aspects.Root.Metadata. CommitMessage.Shortlogt€iHomlix2stence

attribute), 30 parent (coalib.bearlib.aspects.root.Root.Redundancy at-
parent (coalib.bearlib.aspects.Root.Metadata. CommitMessage.Shortlog:iBurst(;racter

attribute), 30 parent (coalib.bearlib.aspects.root.Root.Redundancy.Clone
parent (coalib.bearlib.aspects.Root.Metadata.CommitMessage.Shortlogtivemgtd), 24

attribute), 30 parent (coalib.bearlib.aspects.root.Root.Redundancy.UnreachableCode
parent (coalib.bearlib.aspects.Root.Metadata. CommitMessage.Shortlogtiiehsee), 25

attribute), 30 parent (coalib.bearlib.aspects.root.Root.Redundancy.UnreachableCode. Unre
parent (coalib.bearlib.aspects.Root.Metadata. CommitMessage.ShortlogttrhiliagPEriod

attribute), 30 parent (coalib.bearlib.aspects.root.Root.Redundancy.UnreachableCode.Unu
parent (coalib.bearlib.aspects.Root.Redundancy at- attribute), 25

tribute), 33 parent (coalib.bearlib.aspects.root.Root.Redundancy.UnusedImport
parent (coalib.bearlib.aspects.Root.Redundancy.Clone at- attribute), 25

tribute), 31 parent (coalib.bearlib.aspects.root.Root.Redundancy.Unused Variable
parent (coalib.bearlib.aspects.Root.Redundancy.UnreachableCode attribute), 26

attribute), 32 parent (coalib.bearlib.aspects.root.Root.Redundancy.Unused Variable.Unuse
parent (coalib.bearlib.aspects.Root.Redundancy.Unreachable Code. Unratiribaibdg SPftement

attribute), 31 parent (coalib.bearlib.aspects.root.Root.Redundancy.Unused Variable.Unuse
parent (coalib.bearlib.aspects.Root.Redundancy.UnreachableCode. Unuttdbute)tida

attribute), 31 parent (coalib.bearlib.aspects.root.Root.Redundancy.Unused Variable.Unuse
parent (coalib.bearlib.aspects.Root.Redundancy.UnusedImport attribute), 26

attribute), 32 parent (coalib.bearlib.aspects.root.Root.Spelling at-
parent (coalib.bearlib.aspects.Root.Redundancy.Unused Variable tribute), 26

attribute), 32 parent (coalib.bearlib.aspects.root.Root.Spelling.aspectsYEAH
parent (coalib.bearlib.aspects.Root.Redundancy.Unused Variable. Unusadiilntte) Vafiable

attribute), 32 parent (coalib.bearlib.aspects.Root.Spelling attribute), 33
parent (coalib.bearlib.aspects.Root.Redundancy.Unused Varighalehi fosatibdesVibviadfects.Root.Spelling.aspectsYEAH

attribute), 32 attribute), 33
parent (coalib.bearlib.aspects.Root.Redundancy.Unused Varighalehin(sedfataaelidr aspects.Spelling.aspectsYEAH at-

attribute), 32 tribute), 19
parent (coalib.bearlib.aspects.root.Root attribute), 26 parent (coalib.bearlib.aspects.Spelling.Spelling attribute),
parent (coalib.bearlib.aspects.root.Root.Metadata at- 19

tribute), 24 parent (coalib.bearlib.aspects.Spelling.Spelling.aspectsYEAH
parent (coalib.bearlib.aspects.root.Root.Metadata.CommitMessage attribute), 19

attribute), 24 parse() (coalib.bearlib.languages.documentation.DocumentationComment.T

216 Index

coala Documentation, Release 0.11.0

method), 38
parse() (coalib.parsing.ConfParser.ConfParser method),
83
parse() (coalib.parsing.LineParser.LineParser method), 85
parse_cli() (in module coalib.parsing.CliParsing), 82

parse_custom_settings() (in module
coalib.parsing.CliParsing), 82
parse_lang_str() (in module

coalib.bearlib.languages.Language), 43

path() (in module coalib.settings.Setting), 118

path_list() (in module coalib.settings.Setting), 118

pickle_dump() (in module coalib.misc.CachingUtilities),
70

pickle_load() (in module coalib.misc.CachingUtilities),
70

PLATFORMS (coalib.bears.Bear.Bear attribute), 51

PLATFORMS (coalib.core.Bear.Bear attribute), 60

position (coalib.results. AbsolutePosition. AbsolutePosition
attribute), 98

print_actions() (in module
coalib.output.Consolelnteraction), 77
print_affected_files() (in module
coalib.output.Consolelnteraction), 77
print_affected_lines() (in module
coalib.output.Consolelnteraction), 77
print_bears() (in module
coalib.output.Consolelnteraction), 78
print_beautified_diff() (in module

coalib.results.result_actions.ShowPatchAction),
98

print_diffs_info() (in module
coalib.output.Consolelnteraction), 78
print_from_name() (in module

coalib.results.result_actions.ShowPatchAction),
98

print_lines() (in module
coalib.output.Consolelnteraction), 78
print_result() (in module

coalib.output.Consolelnteraction), 78
print_result() (in module coalib.processes.Processing), 93

print_results() (in module
coalib.output.Consolelnteraction), 78

print_results_formatted() (in module
coalib.output.Consolelnteraction), 79

print_results_no_input() (in module
coalib.output.Consolelnteraction), 79

print_section_beginning() (in module
coalib.output.Consolelnteraction), 79

print_to_name() (in module
coalib.results.result_actions.ShowPatchAction),
98

PrintAspectAction (class in
coalib.results.result_actions.PrintAspectAction),
96

PrintDebugMessageAction (class in
coalib.results.result_actions.PrintDebugMessageAction),
96

printer (coalib.output.printers.LogPrinter.LogPrinter at-
tribute), 74

PrintMorelnfoAction (class in
coalib.results.result_actions.PrintMoreInfoAction),
96

process_queues() (in module

coalib.processes.Processing), 94

R

range() (coalib.results.Diff.Diff method), 101
Redundancy (class in coalib.bearlib.aspects.Redundancy),

14
Redundancy.Clone (class in
coalib.bearlib.aspects.Redundancy), 15
Redundancy.UnreachableCode (class in

coalib.bearlib.aspects.Redundancy), 15
Redundancy.UnreachableCode.UnreachableStatement
(class in coalib.bearlib.aspects.Redundancy),
15
Redundancy.UnreachableCode.UnusedFunction (class in
coalib.bearlib.aspects.Redundancy), 15

Redundancy.UnusedImport (class in
coalib.bearlib.aspects.Redundancy), 15
Redundancy.UnusedVariable (class in

coalib.bearlib.aspects.Redundancy), 15
Redundancy.Unused Variable.UnusedGlobal Variable
(class in coalib.bearlib.aspects.Redundancy),
15
Redundancy.UnusedVariable.UnusedLocal Variable (class
in coalib.bearlib.aspects.Redundancy), 16
Redundancy.UnusedVariable.UnusedParameter (class in
coalib.bearlib.aspects.Redundancy), 16
relative_flat_glob() (in module coalib.parsing.Globbing),
84

relative_recursive_glob() (in module
coalib.parsing.Globbing), 84
relative_wildcard_glob() (in module

coalib.parsing.Globbing), 85

remove() (coalib.results.Diff.Diff method), 101

remove_range() (in module coalib.results.ResultFilter),
105

remove_result_ranges_diffs() (in
coalib.results.ResultFilter), 105

rename (coalib.results.Diff.Diff attribute), 101

renamed_file() (coalib.results.SourceRange.SourceRange
method), 107

replace() (coalib.results.Diff.Diff method), 101

replace_spaces_with_tabs()
(coalib.bearlib.spacing.SpacingHelper.SpacingHelper
method), 46

module

Index

217

coala Documentation, Release 0.11.0

replace_tabs_with_spaces()

(coalib.bearlib.spacing.SpacingHelper.SpacingHelper

method), 46
require_setting() (in
coalib.output.Consolelnteraction), 79
REQUIREMENTS (coalib.bears.Bear.Bear attribute), 51
REQUIREMENTS (coalib.core.Bear.Bear attribute), 60
reset() (coalib.output.Logging.CounterHandler class
method), 81

module

resolve() (coalib.core.DependencyTracker.DependencyTracker

method), 66
resolve() (in module coalib.collecting.Dependencies), 56
Result (class in coalib.results.Result), 103

Root.Metadata.CommitMessage.Shortlog.Length (class
in coalib.bearlib.aspects), 30
Root.Metadata.CommitMessage.Shortlog.Length (class
in coalib.bearlib.aspects.root), 23
Root.Metadata.CommitMessage.Shortlog. Tense (class in
coalib.bearlib.aspects), 30
Root.Metadata.CommitMessage.Shortlog.Tense (class in
coalib.bearlib.aspects.root), 24
Root.Metadata.CommitMessage.Shortlog. TrailingPeriod
(class in coalib.bearlib.aspects), 30
Root.Metadata.CommitMessage.Shortlog.TrailingPeriod
(class in coalib.bearlib.aspects.root), 24
Root.Redundancy (class in coalib.bearlib.aspects), 31

ResultAction (class in Root.Redundancy (class in coalib.bearlib.aspects.root), 24
coalib.results.result_actions.ResultAction), Root.Redundancy.Clone (class in coalib.bearlib.aspects),
96 31

return_sep (coalib.bearlib.languages.documentation.Docstyl HoefiRiedmPacsyy(dbedinition. Metadatass in
attribute), 35 coalib.bearlib.aspects.root), 24

Root (class in coalib.bearlib.aspects), 27 Root.Redundancy.UnreachableCode (class in

Root (class in coalib.bearlib.aspects.root), 20 coalib.bearlib.aspects), 31

Root.Metadata (class in coalib.bearlib.aspects), 29 Root.Redundancy.UnreachableCode (class in

Root.Metadata (class in coalib.bearlib.aspects.root), 22

Root.Metadata.CommitMessage (class in
coalib.bearlib.aspects), 29
Root.Metadata.CommitMessage (class in
coalib.bearlib.aspects.root), 22
Root.Metadata.CommitMessage.Body (class in
coalib.bearlib.aspects), 29
Root.Metadata.CommitMessage.Body (class in

coalib.bearlib.aspects.root), 22
Root.Metadata. CommitMessage.Body.Existence (class in
coalib.bearlib.aspects), 29
Root.Metadata.CommitMessage.Body.Existence (class in
coalib.bearlib.aspects.root), 22
Root.Metadata.CommitMessage.Body.Length (class in
coalib.bearlib.aspects), 29
Root.Metadata.CommitMessage.Body.Length (class in
coalib.bearlib.aspects.root), 23

Root.Metadata.CommitMessage.Emptiness ~ (class in
coalib.bearlib.aspects), 29
Root.Metadata.CommitMessage.Emptiness (class in
coalib.bearlib.aspects.root), 23
Root.Metadata.CommitMessage.Shortlog ~ (class in
coalib.bearlib.aspects), 30
Root.Metadata.CommitMessage.Shortlog ~ (class in

coalib.bearlib.aspects.root), 23
Root.Metadata.CommitMessage.Shortlog.ColonExistence
(class in coalib.bearlib.aspects), 30
Root.Metadata.CommitMessage.Shortlog.ColonExistence
(class in coalib.bearlib.aspects.root), 23
Root.Metadata.CommitMessage.Shortlog.FirstCharacter
(class in coalib.bearlib.aspects), 30
Root.Metadata.CommitMessage.Shortlog. FirstCharacter
(class in coalib.bearlib.aspects.root), 23

coalib.bearlib.aspects.root), 24
Root.Redundancy.UnreachableCode.UnreachableStatement
(class in coalib.bearlib.aspects), 31
Root.Redundancy.UnreachableCode.UnreachableStatement
(class in coalib.bearlib.aspects.root), 25
Root.Redundancy.UnreachableCode.UnusedFunction
(class in coalib.bearlib.aspects), 31
Root.Redundancy.UnreachableCode.UnusedFunction
(class in coalib.bearlib.aspects.root), 25

Root.Redundancy.UnusedImport (class in
coalib.bearlib.aspects), 32
Root.Redundancy.UnusedImport (class in

coalib.bearlib.aspects.root), 25

Root.Redundancy.UnusedVariable (class in
coalib.bearlib.aspects), 32
Root.Redundancy.Unused Variable (class in

coalib.bearlib.aspects.root), 25
Root.Redundancy.Unused Variable.UnusedGlobal Variable
(class in coalib.bearlib.aspects), 32
Root.Redundancy.Unused Variable.UnusedGlobal Variable
(class in coalib.bearlib.aspects.root), 25
Root.Redundancy.Unused Variable.UnusedLocal Variable
(class in coalib.bearlib.aspects), 32
Root.Redundancy.UnusedVariable.UnusedLocal Variable
(class in coalib.bearlib.aspects.root), 25
Root.Redundancy.Unused Variable.UnusedParameter
(class in coalib.bearlib.aspects), 32
Root.Redundancy.Unused Variable.UnusedParameter
(class in coalib.bearlib.aspects.root), 26
Root.Spelling (class in coalib.bearlib.aspects), 33
Root.Spelling (class in coalib.bearlib.aspects.root), 26
Root.Spelling.aspectsYEAH (class in
coalib.bearlib.aspects), 33

218

Index

coala Documentation, Release 0.11.0

Root.Spelling.aspectsYEAH (class in
coalib.bearlib.aspects.root), 26

run() (coalib.bears.Bear.Bear method), 53

run() (coalib.bears.GlobalBear.GlobalBear method), 53

run() (coalib.bears.LocalBear.LLocalBear method), 54

run() (coalib.misc.BuildManPage.BuildManPage
method), 68

run() (coalib.processes.LogPrinterThread.LogPrinterThread

method), 90
run() (in module coalib.core.Core), 63
run() (in module coalib.processes.BearRunning), 86
run_bear() (in module coalib.processes.BearRunning), 87
run_bear_from_section() (coalib.bears.Bear.Bear
method), 53
run_coala() (in module coalib.coala_main), 121

run_global_bear() (in module
coalib.processes.BearRunning), 88

run_global_bears() (in module
coalib.processes.BearRunning), 88

run_interactive_shell_command() (in module
coalib.misc.Shell), 72

run_local_bear() (in module
coalib.processes.BearRunning), 88

run_local_bears() (in module
coalib.processes.BearRunning), 89

run_local_bears_on_file() (in module

coalib.processes.BearRunning), 89
run_shell_command() (in module coalib.misc.Shell), 73

S

save_sections() (in module
coalib.settings.ConfigurationGathering),
112
schedule_bears() (in module coalib.core.Core), 63
Section (class in coalib.settings.Section), 115
SectionCreatable (class in
coalib.bearlib.abstractions.SectionCreatable), 7
SEE_MORE (coalib.bears.Bear.Bear attribute), 51
send_msg() (in module coalib.processes.BearRunning),
89
set_default_section()
method), 116
Setting (class in coalib.settings.Setting), 118

(coalib.settings.Section.Section

settings_changed() (in module
coalib.misc.CachingUtilities), 71

setup_dependencies() (coalib.bears.Bear.Bear static
method), 53

setup_dependencies() (coalib.core.Bear.Bear static
method), 62

ShellCommandResult (class in coalib.misc.Shell), 72

Shortlog (class in coalib.bearlib.aspects.Metadata), 13

Shortlog.ColonExistence (class in
coalib.bearlib.aspects.Metadata), 13

Shortlog.FirstCharacter (class in
coalib.bearlib.aspects.Metadata), 13

Shortlog.Length (class in
coalib.bearlib.aspects.Metadata), 13

Shortlog. Tense (class in coalib.bearlib.aspects.Metadata),
13

Shortlog.TrailingPeriod (class in
coalib.bearlib.aspects.Metadata), 14

show_bear() (in module
coalib.output.Consolelnteraction), 79

show_bears() (in module
coalib.output.Consolelnteraction), 80

show_enumeration() (in module
coalib.output.Consolelnteraction), 80

show_language_bears_capabilities() (in module
coalib.output.Consolelnteraction), 80

ShowPatchAction (class in
coalib.results.result_actions.ShowPatchAction),
97

simplify_section_result() (in module

coalib.processes.Processing), 94
source_location (coalib.bears.Bear.Bear attribute), 53
source_location (coalib.core.Bear.Bear attribute), 62
source_ranges_match() (in module

coalib.results.ResultFilter), 106
SourcePosition (class in coalib.results.SourcePosition),

106
SourceRange (class in coalib.results.SourceRange), 106
SpacingHelper (class in

coalib.bearlib.spacing.SpacingHelper), 46

Spelling (class in coalib.bearlib.aspects.Spelling), 19

Spelling.aspectsYEAH (class in
coalib.bearlib.aspects.Spelling), 19

split_diff() (coalib.results.Diff.Diff method), 102

start (coalib.results. TextRange.TextRange attribute), 108

stats() (coalib.results.Diff.Diff method), 102

str_nodesc (coalib.settings.FunctionMetadata. FunctionMetadata
attribute), 115

str_optional (coalib.settings.FunctionMetadata.FunctionMetadata
attribute), 115

styles (coalib.output.Consolelnteraction.BackgroundMessageStyle
attribute), 75

styles (coalib.output.Consolelnteraction.BackgroundSourceRangeStyle
attribute), 75

styles (coalib.output.Consolelnteraction.NoColorStyle at-
tribute), 75

subaspect() (coalib.bearlib.aspects.aspectclass method),

33

subaspect() (coalib.bearlib.aspects.meta.aspectclass
method), 20

subaspects (coalib.bearlib.aspects.Metadata.Body at-
tribute), 8

subaspects (coalib.bearlib.aspects.Metadata.Body.Existence
attribute), 8

Index

219

coala Documentation, Release 0.11.0

subaspects (coalib.bearlib.aspects.Metadata.Body.Length subaspects (coalib.bearlib.aspects.Metadata.Metadata.CommitMessage.Sho:

attribute), 8 attribute), 12

subaspects (coalib.bearlib.aspects.Metadata.ColonExistence subaspects (coalib.bearlib.aspects.Metadata.Metadata.CommitMessage.Sho
attribute), 8 attribute), 13

subaspects (coalib.bearlib.aspects.Metadata. CommitMessageubaspects (coalib.bearlib.aspects.Metadata.Shortlog at-
attribute), 10 tribute), 14

subaspects (coalib.bearlib.aspects.Metadata.CommitMessagsibadpects (coalib.bearlib.aspects.Metadata.Shortlog.ColonExistence
attribute), 9 attribute), 13

subaspects (coalib.bearlib.aspects.Metadata. CommitMessagsibadpdeétiwordeb.bearlib.aspects.Metadata.Shortlog. FirstCharacter
attribute), 9 attribute), 13

subaspects (coalib.bearlib.aspects.Metadata. CommitMessageibadpdcengthalib.bearlib.aspects.Metadata.Shortlog.Length
attribute), 9 attribute), 13

subaspects (coalib.bearlib.aspects.Metadata. CommitMessagsilhmypents{coalib.bearlib.aspects.Metadata.Shortlog. Tense
attribute), 9 attribute), 14

subaspects (coalib.bearlib.aspects.Metadata. CommitMessageiimspbogs (coalib.bearlib.aspects.Metadata.Shortlog. TrailingPeriod
attribute), 10 attribute), 14

subaspects (coalib.bearlib.aspects.Metadata. CommitMessageifimspbogs Colondibsbenckb.aspects.Metadata. Tense ~ at-
attribute), 9 tribute), 14

subaspects (coalib.bearlib.aspects.Metadata. CommitMessagei8hwritogs Fastthheathb.aspects.Metadata. TrailingPeriod
attribute), 9 attribute), 14

subaspects (coalib.bearlib.aspects.Metadata. CommitMessageifimspbogs L eugthb.bearlib.aspects.Redundancy.Clone at-
attribute), 10 tribute), 14

subaspects (coalib.bearlib.aspects.Metadata. CommitMessageiiwritogs Tenatib.bearlib.aspects.Redundancy.Redundancy
attribute), 10 attribute), 16

subaspects (coalib.bearlib.aspects.Metadata. CommitMessageiimspbogs TeadlitgPeardid. aspects. Redundancy. Redundancy.Clone
attribute), 10 attribute), 15

subaspects (coalib.bearlib.aspects.Metadata.Emptiness at- subaspects (coalib.bearlib.aspects.Redundancy.Redundancy.UnreachableCo
tribute), 10 attribute), 15

subaspects (coalib.bearlib.aspects.Metadata.Existence at- subaspects (coalib.bearlib.aspects.Redundancy.Redundancy.UnreachableCo
tribute), 10 attribute), 15

subaspects (coalib.bearlib.aspects.Metadata.FirstCharacter subaspects (coalib.bearlib.aspects.Redundancy.Redundancy.UnreachableCo
attribute), 11 attribute), 15

subaspects (coalib.bearlib.aspects.Metadata.Length at- subaspects (coalib.bearlib.aspects.Redundancy.Redundancy.UnusedImport
tribute), 11 attribute), 15

subaspects (coalib.bearlib.aspects.Metadata.Metadata at- subaspects (coalib.bearlib.aspects.Redundancy.Redundancy.UnusedVariable
tribute), 13 attribute), 16

subaspects (coalib.bearlib.aspects.Metadata.Metadata. Comnsitbhsgregte (coalib.bearlib.aspects.Redundancy.Redundancy.Unused Variable
attribute), 13 attribute), 16

subaspects (coalib.bearlib.aspects.Metadata.Metadata. Comnsitblsgprcte Bodlib.bearlib.aspects.Redundancy.Redundancy.Unused Variable
attribute), 11 attribute), 16

subaspects (coalib.bearlib.aspects.Metadata.Metadata. Comnsitbisgrags @odliEhestditraspects. Redundancy.Redundancy. Unused Variable
attribute), 11 attribute), 16

subaspects (coalib.bearlib.aspects.Metadata. Metadata. Comnsitbhsgregts Bodlib.bagthib.aspects.Redundancy.UnreachableCode
attribute), 11 attribute), 17

subaspects (coalib.bearlib.aspects.Metadata.Metadata. Comnsitblspecte fogimbsarlib.aspects.Redundancy.UnreachableCode.Unreachal
attribute), 12 attribute), 16

subaspects (coalib.bearlib.aspects.Metadata. Metadata. Comnsitbisgrags Qloatilolearlib.aspects.Redundancy. UnreachableCode.UnusedFu
attribute), 13 attribute), 17

subaspects (coalib.bearlib.aspects.Metadata. Metadata. Comnsiubisgegs Sloatilobe@dibrspestsnRedundancy. UnreachableStatement
attribute), 12 attribute), 17

subaspects (coalib.bearlib.aspects.Metadata. Metadata. Comnsitbispects Qloatihehitsb(@peatteRedundancy. UnusedFunction
attribute), 12 attribute), 17

subaspects (coalib.bearlib.aspects.Metadata. Metadata. Comnsitbhsgregte Qloatitolchehlytis pects. Redundancy. UnusedGlobal Variable
attribute), 12 attribute), 17

220 Index

coala Documentation, Release 0.11.0

subaspects (coalib.bearlib.aspects.Redundancy.UnusedImport attribute), 32

attribute), 17 subaspects (coalib.bearlib.aspects.Root.Redundancy.Unused Variable.Unuse:
subaspects (coalib.bearlib.aspects.Redundancy.UnusedLocal Variable attribute), 32

attribute), 18 subaspects (coalib.bearlib.aspects.Root.Redundancy.Unused Variable.Unuse
subaspects (coalib.bearlib.aspects.Redundancy.UnusedParameter attribute), 32

attribute), 18 subaspects (coalib.bearlib.aspects.root.Root attribute), 26
subaspects (coalib.bearlib.aspects.Redundancy.Unused Variabitbaspects (coalib.bearlib.aspects.root.Root.Metadata at-

attribute), 18 tribute), 24
subaspects (coalib.bearlib.aspects.Redundancy.Unused Variabltbhipests (Glotiih Vaaabbeaspects.root.Root. Metadata. CommitMessage

attribute), 18 attribute), 24
subaspects (coalib.bearlib.aspects.Redundancy.Unused Variabitbhipests [coediWingaHlib.aspects.root.Root. Metadata. CommitMessage.Bod

attribute), 18 attribute), 23
subaspects (coalib.bearlib.aspects.Redundancy.Unused Variablthhspests Rewaliteterarlib.aspects.root.Root. Metadata. CommitMessage. Bod

attribute), 18 attribute), 23
subaspects (coalib.bearlib.aspects.Root attribute), 33 subaspects (coalib.bearlib.aspects.root.Root. Metadata. CommitMessage.Bod
subaspects (coalib.bearlib.aspects.Root.Metadata at- attribute), 23

tribute), 31 subaspects (coalib.bearlib.aspects.root.Root.Metadata. CommitMessage.Emj
subaspects (coalib.bearlib.aspects.Root.Metadata.CommitMessage attribute), 23

attribute), 31 subaspects (coalib.bearlib.aspects.root.Root.Metadata. CommitMessage.Sho
subaspects (coalib.bearlib.aspects.Root. Metadata. CommitMessage.Bodstribute), 24

attribute), 29 subaspects (coalib.bearlib.aspects.root.Root.Metadata. CommitMessage.Sho
subaspects (coalib.bearlib.aspects.Root.Metadata. CommitMessage. Bodgtdibuseonce

attribute), 29 subaspects (coalib.bearlib.aspects.root.Root.Metadata. CommitMessage.Sho
subaspects (coalib.bearlib.aspects.Root.Metadata.CommitMessage.Bodtdilentgth 23

attribute), 29 subaspects (coalib.bearlib.aspects.root.Root. Metadata. CommitMessage.Sho
subaspects (coalib.bearlib.aspects.Root.Metadata. CommitMessage. Engitibsse), 24

attribute), 30 subaspects (coalib.bearlib.aspects.root.Root.Metadata. CommitMessage.Sho
subaspects (coalib.bearlib.aspects.Root.Metadata. CommitMessage.Shattholgute), 24

attribute), 31 subaspects (coalib.bearlib.aspects.root.Root.Metadata. CommitMessage.Sho
subaspects (coalib.bearlib.aspects.Root.Metadata. CommitMessage.Shattivlguey] dExistence

attribute), 30 subaspects (coalib.bearlib.aspects.root.Root.Redundancy
subaspects (coalib.bearlib.aspects.Root.Metadata. CommitMessage. Shattholgukiys@tharacter

attribute), 30 subaspects (coalib.bearlib.aspects.root.Root.Redundancy.Clone
subaspects (coalib.bearlib.aspects.Root.Metadata. CommitMessage.Shattivguten Sth

attribute), 30 subaspects (coalib.bearlib.aspects.root.Root.Redundancy.UnreachableCode
subaspects (coalib.bearlib.aspects.Root.Metadata. CommitMessage. ShattholguTen &5

attribute), 30 subaspects (coalib.bearlib.aspects.root.Root.Redundancy.UnreachableCode.
subaspects (coalib.bearlib.aspects.Root.Metadata. CommitMessage.ShattiolguiapihigPeriod

attribute), 31 subaspects (coalib.bearlib.aspects.root.Root.Redundancy.UnreachableCode.
subaspects (coalib.bearlib.aspects.Root.Redundancy at- attribute), 25

tribute), 33 subaspects (coalib.bearlib.aspects.root.Root.Redundancy.UnusedImport
subaspects (coalib.bearlib.aspects.Root.Redundancy.Clone attribute), 25

attribute), 31 subaspects (coalib.bearlib.aspects.root.Root.Redundancy.Unused Variable
subaspects (coalib.bearlib.aspects.Root.Redundancy.UnreachableCodeattribute), 26

attribute), 32 subaspects (coalib.bearlib.aspects.root.Root.Redundancy.Unused Variable.U
subaspects (coalib.bearlib.aspects.Root.Redundancy.UnreachableCodeatfritestehabieStatement

attribute), 31 subaspects (coalib.bearlib.aspects.root.Root.Redundancy.Unused Variable.U
subaspects (coalib.bearlib.aspects.Root.Redundancy.UnreachableCodeatfribs¢dF@ifiction

attribute), 31 subaspects (coalib.bearlib.aspects.root.Root.Redundancy.Unused Variable.U
subaspects (coalib.bearlib.aspects.Root.Redundancy.UnusedImport attribute), 26

attribute), 32 subaspects (coalib.bearlib.aspects.root.Root.Spelling at-
subaspects (coalib.bearlib.aspects.Root.Redundancy.Unused Variable tribute), 26

attribute), 32 subaspects (coalib.bearlib.aspects.root.Root.Spelling.aspectsYEAH
subaspects (coalib.bearlib.aspects.Root.Redundancy.Unused Variable. Utitrsbd(a)pBal Variable

Index 221

coala Documentation, Release 0.11.0

subaspects (coalib.bearlib.aspects.Root.Spelling at-
tribute), 33

translate() (in module coalib.parsing.Globbing), 85
traverse_graph() (in module coalib.core.Graphs), 66

subaspects (coalib.bearlib.aspects.Root.Spelling.aspects YEA¥bechain() (in module coalib.settings. Annotations), 109

attribute), 33

subaspects (coalib.bearlib.aspects.Spelling.aspectsYEAH
attribute), 19

subaspects (coalib.bearlib.aspects.Spelling.Spelling at-
tribute), 19

typed_dict() (in module coalib.settings.Setting), 118

typed_list() (in module coalib.settings.Setting), 118

typed_ordered_dict() (in module coalib.settings.Setting),
119

subaspects (coalib.beaﬂib.aspects.Spelling.Spelling.aspects&LElAH

attribute), 19

SUCCESS_MESSAGE (coalib.results.result_actions. ApplyRitghActtabbe@SpgabyPatchAction

attribute), 95

SUCCESS_MESSAGE (coalib.results.result_actions.Ignore ReselécibdagdoidResadbAblédnatement

attribute), 95

SUCCESS_MESSAGE (coalib.results.result_actions.OpenEUitio¢ AdtabileOpdeHdiiosddiE g tion

attribute), 95

SUCCESS_MESSAGE (coalib.results.result_actions.Result AgitoacReisldSAatnrent

attribute), 96

unified_diff (coalib.results.Diff.Diff attribute), 102

(class in
coalib.bearlib.aspects.Redundancy), 16
(class in
coalib.bearlib.aspects.Redundancy), 16
(class in
coalib.bearlib.aspects.Redundancy), 16
(class in

coalib.bearlib.aspects.Redundancy), 17

SUCCESS_MESSAGE (coalib.results.result_actions.ShowPatthadktiiteShogeBatithmisto@aching FileCache method),

attribute), 97

T

task_done() (in module coalib.processes.BearRunning),
90

Taste (in module coalib.bearlib.aspects), 33

Taste (in module coalib.bearlib.aspects.taste), 26

TasteError, 27, 33

TasteMeta (class in coalib.bearlib.aspects.taste), 27

tastes (coalib.bearlib.aspects.aspectbase attribute), 34

tastes (coalib.bearlib.aspects.aspectclass attribute), 33

tastes (coalib.bearlib.aspects.base.aspectbase attribute),
19

tastes (coalib.bearlib.aspects.meta.aspectclass attribute),
20

Tense (class in coalib.bearlib.aspects.Metadata), 14

TextPosition (class in coalib.results. TextPosition), 107

TextRange (class in coalib.results. TextRange), 108

to_camelcase() (in module
coalib.bearlib.naming_conventions), 44

to_kebabcase() (in module
coalib.bearlib.naming_conventions), 45
to_pascalcase() (in module
coalib.bearlib.naming_conventions), 45
to_snakecase() (in module
coalib.bearlib.naming_conventions), 45
to_spacecase() (in module

coalib.bearlib.naming_conventions), 46

69

UnusedFunction (class in
coalib.bearlib.aspects.Redundancy), 17

UnusedGlobal Variable (class in
coalib.bearlib.aspects.Redundancy), 17

UnusedImport (class in
coalib.bearlib.aspects.Redundancy), 17

UnusedLocal Variable (class in
coalib.bearlib.aspects.Redundancy), 17

UnusedParameter (class in
coalib.bearlib.aspects.Redundancy), 18

Unused Variable (class in

coalib.bearlib.aspects.Redundancy), 18

Unused Variable.UnusedGlobal Variable (class in
coalib.bearlib.aspects.Redundancy), 18

Unused Variable.UnusedLocal Variable (class in
coalib.bearlib.aspects.Redundancy), 18

Unused Variable.UnusedParameter (class in
coalib.bearlib.aspects.Redundancy), 18

update() (coalib.settings.Section.Section method), 117

update_ordered_dict_key() (in module
coalib.misc.DictUtilities), 71

update_setting() (coalib.settings.Section.Section
method), 117

update_settings_db() (in
coalib.misc.CachingUtilities), 71

url() (in module coalib.settings.Setting), 119

user_options (coalib.misc.BuildManPage.BuildManPage

module

to_string_dict() (coalib.processes.communication.LogMessage. LogMed¢tidaite), 68

method), 85
to_string_dict() (coalib.results.Result.Result method),
104

track_files() (coalib.misc.Caching.FileCache method), 69
TrailingPeriod (class in coalib.bearlib.aspects.Metadata),
14

V

validate_results() (in
coalib.processes.BearRunning), 90
value (coalib.settings.Setting.Setting attribute), 118

module

222

Index

coala Documentation, Release 0.11.0

verify_local_bear() (in module
coalib.testing.LocalBearTestHelper), 120

W

warn() (coalib.output.printers.LogPrinter.LogPrinterMixin
method), 75

warn_config_absent() (in module
coalib.settings.ConfigurationGathering),
112

warn_nonexistent_targets() (in module
coalib.settings.ConfigurationGathering),
112

write() (coalib.misc.Caching.FileCache method), 69

write_section() (coalib.output.ConfWriter.ConfWriter
method), 75

write_sections() (coalib.output.ConfWriter.ConfWriter
method), 75

Y

yield_ignore_ranges() (in module
coalib.processes.Processing), 94

yield_tab_lengths() (coalib.bearlib.spacing.SpacingHelper.SpacingHelper
method), 46

Index

223

	coalib package
	Subpackages
	Submodules
	coalib.coala module
	coalib.coala_ci module
	coalib.coala_delete_orig module
	coalib.coala_format module
	coalib.coala_json module
	coalib.coala_main module
	coalib.coala_modes module
	Module contents

	Welcome to the Newcomers Guide!
	Step 0. Run coala
	Step 1. Meet the Community!
	Step 2. Grab an Invitation to the Organization
	Optional. Get Help With Git
	Step 3. Picking Up an Issue
	Step 4. Creating a Fork and Testing Your Changes
	Step 5. Sending Your Changes
	Step 6. Creating a Pull Request
	Step 7. Waiting for Review
	Step 8. Review Process

	coala settings
	Bear Installation Tool
	Installation
	Usage

	How To Write a Good Commit Message
	Quick reference
	What Makes a Good Commit
	How to Write Good Commit Messages
	Editing Commit Messages
	Why Do We Need Good Commits?

	Codestyle for coala
	Additional Style Guidelines

	Git Tutorial
	How to install Git
	Getting Started with coala
	Grabbing coala on your local machine
	Getting to work
	Creating a new branch
	Checking your work
	Adding the files and commiting
	Run coala
	Pushing the commit
	Creating a Pull Request
	Follow-up
	Rebasing
	Squashing your commits
	Common Git Issues
	Useful Git commands

	Reviewing
	Am I Good Enough to Do Code Review?
	Manual Review Process
	Automated Review Process
	For the Reviewers

	Development Setup Notes
	Virtualenv
	Repositories
	Installing from Git
	Building Documentation

	Adding CI to your Fork
	Travis CI
	AppVeyor CI
	Circle CI
	Codecov

	Guide to Writing a Native Bear
	What is a bear?
	A Hello World Bear
	Communicating with the User
	Results
	Bears Depending on Other Bears
	Hidden Results
	More Configuration Options

	Linter Bears
	Why is This Useful?
	What do we Need?
	Writing the Bear
	Using Severities
	Suggest Corrections Using the corrected and unified-diff Output Formats
	Adding Settings to our Bear
	Finished Bear
	Adding Metadata Attributes
	Running and Testing our Bear
	Global Linter Bears
	Where to Find More...

	Linter Bears - Advanced Feature Reference
	Supplying Configuration Files with generate_config
	Custom Processing Functions with process_output
	Additional Prerequisite Check

	External Bears
	Why is This Useful?
	How Does This Work?
	External Bear Generation Tool
	Writing a Bear in C++
	Writing a Bear With Javascript and Node
	The JSON Spec

	How to use LocalBearTestHelper to test your bears
	Understanding through examples
	A Final Note

	Introduction
	Actually Writing a Test
	setUp() and tearDown()
	Kickstart
	Glossary

	Writing Documentation
	Testing
	Executing our Tests
	Using test coverage

	Useful Links
	Git-Links
	Python-Links
	rST-Links
	coala-Links

	Python Module Index

